基于CUDA的GP-GPU并行拉普拉斯滤波

Mishal Almazrooie, R. Abdullah, L. Yi, Ibrahim Venkat, Zahraa Adnan
{"title":"基于CUDA的GP-GPU并行拉普拉斯滤波","authors":"Mishal Almazrooie, R. Abdullah, L. Yi, Ibrahim Venkat, Zahraa Adnan","doi":"10.1109/ICIMU.2014.7066604","DOIUrl":null,"url":null,"abstract":"Parallel programming has been extensively applied to different fields, such as medicine, security, and image processing. This paper focuses on parallelizing the Laplacian filter, an edge detection algorithm, using CUDA. We have conducted a performance analysis to benchmark the sequential Laplacian version against the CUDA parallel approach. Results show that the parallelization of Laplacian filter achieves better performance than sequential code. CUDA approach achieved 200 fold speedup for an image size of 50MB when 216 processing elements were deployed.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel Laplacian filter using CUDA on GP-GPU\",\"authors\":\"Mishal Almazrooie, R. Abdullah, L. Yi, Ibrahim Venkat, Zahraa Adnan\",\"doi\":\"10.1109/ICIMU.2014.7066604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel programming has been extensively applied to different fields, such as medicine, security, and image processing. This paper focuses on parallelizing the Laplacian filter, an edge detection algorithm, using CUDA. We have conducted a performance analysis to benchmark the sequential Laplacian version against the CUDA parallel approach. Results show that the parallelization of Laplacian filter achieves better performance than sequential code. CUDA approach achieved 200 fold speedup for an image size of 50MB when 216 processing elements were deployed.\",\"PeriodicalId\":408534,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Information Technology and Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMU.2014.7066604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

并行编程已经广泛应用于不同的领域,如医学、安全、图像处理等。本文重点研究了利用CUDA并行化边缘检测算法拉普拉斯滤波。我们对顺序拉普拉斯版本和CUDA并行方法进行了性能分析。结果表明,并行化的拉普拉斯滤波比顺序编码的性能更好。当部署216个处理元素时,CUDA方法在50MB大小的图像上实现了200倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Laplacian filter using CUDA on GP-GPU
Parallel programming has been extensively applied to different fields, such as medicine, security, and image processing. This paper focuses on parallelizing the Laplacian filter, an edge detection algorithm, using CUDA. We have conducted a performance analysis to benchmark the sequential Laplacian version against the CUDA parallel approach. Results show that the parallelization of Laplacian filter achieves better performance than sequential code. CUDA approach achieved 200 fold speedup for an image size of 50MB when 216 processing elements were deployed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Table of content (TOC) A data mining approach to analysing airborne wood particulate concentration and atmospheric data Mobile platform for exploring the potential of volunteered geographic information for asset register Web-based learning tool for primary school student with dyscalculia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1