基于ddpg的车辆队列纵向跟踪控制

Junru Yang, Xingliang Liu, Shidong Liu, Duanfeng Chu, Liping Lu, Chaozhong Wu
{"title":"基于ddpg的车辆队列纵向跟踪控制","authors":"Junru Yang, Xingliang Liu, Shidong Liu, Duanfeng Chu, Liping Lu, Chaozhong Wu","doi":"10.1109/CVCI51460.2020.9338516","DOIUrl":null,"url":null,"abstract":"Cooperative adaptive cruise control (CACC) has important significance for the development of the connected and automated vehicle (CAV) industry. In this paper, a learning control method combined Deep Deterministic Policy Gradient and Proportional-Integral-Derivative (DDPG-PID) controller is proposed. The main contribution of this study is automating the PID weight tuning process by formulating this objective as a deep reinforcement learning (DRL) problem. Based on the Hardware-in-the-Loop (HIL) simulation platform, the DDPG-PID controller is compared with the conventional PID controller under the test condition. Experiment results indicate that on 38.95% stability time in vehicular platooning system is decreased by utilizing the proposed method. The performance of maximum distance error is also improved efficiently, which is reduced by 60.94%. The research in this paper is a further development of learning control method and provides a new idea for the practical application of DRL algorithm in industrial field.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Longitudinal Tracking Control of Vehicle Platooning Using DDPG-based PID\",\"authors\":\"Junru Yang, Xingliang Liu, Shidong Liu, Duanfeng Chu, Liping Lu, Chaozhong Wu\",\"doi\":\"10.1109/CVCI51460.2020.9338516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative adaptive cruise control (CACC) has important significance for the development of the connected and automated vehicle (CAV) industry. In this paper, a learning control method combined Deep Deterministic Policy Gradient and Proportional-Integral-Derivative (DDPG-PID) controller is proposed. The main contribution of this study is automating the PID weight tuning process by formulating this objective as a deep reinforcement learning (DRL) problem. Based on the Hardware-in-the-Loop (HIL) simulation platform, the DDPG-PID controller is compared with the conventional PID controller under the test condition. Experiment results indicate that on 38.95% stability time in vehicular platooning system is decreased by utilizing the proposed method. The performance of maximum distance error is also improved efficiently, which is reduced by 60.94%. The research in this paper is a further development of learning control method and provides a new idea for the practical application of DRL algorithm in industrial field.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

协同自适应巡航控制(CACC)对于车联网和自动驾驶汽车的发展具有重要意义。提出了一种结合深度确定性策略梯度和比例-积分-导数(DDPG-PID)控制器的学习控制方法。本研究的主要贡献是通过将该目标表述为深度强化学习(DRL)问题来自动化PID权值整定过程。基于硬件在环仿真平台,将DDPG-PID控制器与传统PID控制器在测试条件下进行了比较。实验结果表明,该方法使车辆队列系统的稳定时间缩短了38.95%。最大距离误差的性能也得到了有效提高,降低了60.94%。本文的研究是对学习控制方法的进一步发展,为DRL算法在工业领域的实际应用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Tracking Control of Vehicle Platooning Using DDPG-based PID
Cooperative adaptive cruise control (CACC) has important significance for the development of the connected and automated vehicle (CAV) industry. In this paper, a learning control method combined Deep Deterministic Policy Gradient and Proportional-Integral-Derivative (DDPG-PID) controller is proposed. The main contribution of this study is automating the PID weight tuning process by formulating this objective as a deep reinforcement learning (DRL) problem. Based on the Hardware-in-the-Loop (HIL) simulation platform, the DDPG-PID controller is compared with the conventional PID controller under the test condition. Experiment results indicate that on 38.95% stability time in vehicular platooning system is decreased by utilizing the proposed method. The performance of maximum distance error is also improved efficiently, which is reduced by 60.94%. The research in this paper is a further development of learning control method and provides a new idea for the practical application of DRL algorithm in industrial field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sensor Fusion of Camera, GNSS and IMU for Autonomous Driving Navigation Collision-avoidance steering control for autonomous vehicles using fast non-singular terminal sliding mode Energy management strategy based on velocity prediction for parallel plug-in hybrid electric bus Constrained Containment Control of Agents Network with Switching Topologies Multi-parameter driver intention recognition based on neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1