基于误差检测的28nm CMOS节能时域二值神经网络加速器

Yuxuan Du, Xinchao Shang, Weiwei Shan
{"title":"基于误差检测的28nm CMOS节能时域二值神经网络加速器","authors":"Yuxuan Du, Xinchao Shang, Weiwei Shan","doi":"10.1109/APCCAS50809.2020.9301692","DOIUrl":null,"url":null,"abstract":"Due to the increasing demand of high energy-efficient processor for deep neural networks, traditional neural network accelerators with high-precision weights and activations that usually occupies huge on/off-chip resources with large power consumption is no longer suitable for internet-of-things applications. Binary neural networks (BNNs) reduce memory size and computation complexity, achieving drastically increased energy efficiency. In this paper, an energy-efficient time-domain binary neural network accelerator is optimized for image recognition, with time-domain accumulation (TD-MAC), timing error detection based adaptive voltage scaling design and the related approximate computing. The proposed key features are: 1) an error-tolerant adaptive voltage scaling system with TD-MAC chain truncation for aggressive power reduction, working from near-threshold to normal voltage; 2) architectural parallelism and data reuse with 100% TD-MAC utilization; 3) low power TD-MAC based on analog delay lines. Fabricated in a 28nm CMOS process, our timing error detection based adaptive voltage scaling design enables the whole system achieves a maximum 51.5TOPS/W energy efficiency at 0.42V and 25MHz, with 99.6% accuracy on MNIST dataset.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Energy-Efficient Time-Domain Binary Neural Network Accelerator with Error-Detection in 28nm CMOS\",\"authors\":\"Yuxuan Du, Xinchao Shang, Weiwei Shan\",\"doi\":\"10.1109/APCCAS50809.2020.9301692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing demand of high energy-efficient processor for deep neural networks, traditional neural network accelerators with high-precision weights and activations that usually occupies huge on/off-chip resources with large power consumption is no longer suitable for internet-of-things applications. Binary neural networks (BNNs) reduce memory size and computation complexity, achieving drastically increased energy efficiency. In this paper, an energy-efficient time-domain binary neural network accelerator is optimized for image recognition, with time-domain accumulation (TD-MAC), timing error detection based adaptive voltage scaling design and the related approximate computing. The proposed key features are: 1) an error-tolerant adaptive voltage scaling system with TD-MAC chain truncation for aggressive power reduction, working from near-threshold to normal voltage; 2) architectural parallelism and data reuse with 100% TD-MAC utilization; 3) low power TD-MAC based on analog delay lines. Fabricated in a 28nm CMOS process, our timing error detection based adaptive voltage scaling design enables the whole system achieves a maximum 51.5TOPS/W energy efficiency at 0.42V and 25MHz, with 99.6% accuracy on MNIST dataset.\",\"PeriodicalId\":127075,\"journal\":{\"name\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS50809.2020.9301692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于深度神经网络对高能效处理器的需求不断增加,传统的高精度权重和激活的神经网络加速器通常占用巨大的片内外资源,功耗大,不再适合物联网应用。二值神经网络(bnn)减少了内存大小和计算复杂度,从而大大提高了能源效率。本文优化了一种高效的时域二值神经网络加速器用于图像识别,采用时域累积(TD-MAC)、基于时序误差检测的自适应电压缩放设计和相关的近似计算。提出的关键特征是:1)具有TD-MAC链截断的容错自适应电压缩放系统,可从近阈值电压工作到正常电压;2)架构并行性和数据重用,100% TD-MAC利用率;3)基于模拟延迟线的低功耗TD-MAC。采用28nm CMOS工艺制造,基于时序误差检测的自适应电压缩放设计使整个系统在0.42V和25MHz下实现最大51.5TOPS/W的能量效率,在MNIST数据集上具有99.6%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Energy-Efficient Time-Domain Binary Neural Network Accelerator with Error-Detection in 28nm CMOS
Due to the increasing demand of high energy-efficient processor for deep neural networks, traditional neural network accelerators with high-precision weights and activations that usually occupies huge on/off-chip resources with large power consumption is no longer suitable for internet-of-things applications. Binary neural networks (BNNs) reduce memory size and computation complexity, achieving drastically increased energy efficiency. In this paper, an energy-efficient time-domain binary neural network accelerator is optimized for image recognition, with time-domain accumulation (TD-MAC), timing error detection based adaptive voltage scaling design and the related approximate computing. The proposed key features are: 1) an error-tolerant adaptive voltage scaling system with TD-MAC chain truncation for aggressive power reduction, working from near-threshold to normal voltage; 2) architectural parallelism and data reuse with 100% TD-MAC utilization; 3) low power TD-MAC based on analog delay lines. Fabricated in a 28nm CMOS process, our timing error detection based adaptive voltage scaling design enables the whole system achieves a maximum 51.5TOPS/W energy efficiency at 0.42V and 25MHz, with 99.6% accuracy on MNIST dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Truth from Practice, Learning beyond Teaching" Exploration in Teaching Analog Integrated Circuit 100 MHz Random Number Generator Design Using Interleaved Metastable NAND/NOR Latches* Performance Analysis of Non-Profiled Side Channel Attacks Based on Convolutional Neural Networks A Self-coupled DT MASH ΔΣ Modulator with High Tolerance to Noise Leakage An Energy-Efficient Time-Domain Binary Neural Network Accelerator with Error-Detection in 28nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1