大型钢架结构电池耗尽桩火灾的三维模拟

N. Braxtan, J. Núñez, Shen-En Chen, Tiefu Zhao, Lynn Harris, D. Cook
{"title":"大型钢架结构电池耗尽桩火灾的三维模拟","authors":"N. Braxtan, J. Núñez, Shen-En Chen, Tiefu Zhao, Lynn Harris, D. Cook","doi":"10.30564/jaeser.v5i3.4985","DOIUrl":null,"url":null,"abstract":"Lithium ion batteries (LIB) can rupture and result in thermal runaway and battery fires. In the process of transporting lithium ion batteries using trains, the massive collection of batteries can cause train fire and pose significant danger to the public. This is especially critical when the fire occurs amid a heavily populated metropolitan environment. This paper reports the 3D analysis of a warehouse with possible train fire due to LIB rupture and the fire propagation at a rail yard. Six critical fire cases with the battery train in close vicinity to the warehouse were considered. The six fire cases are the worst-case scenarios of a Monte Carlo simulation of different fire cases that may occur to an actual steel storage facility at the Capital Railyard, Raleigh, North Carolina. A 3D finite element (FE) frame model was constructed for the steel warehouse and the most critical fire cases were simulated. The results indicated that several structural components of the warehouse would experience large stresses and deflections during the simulated battery fires and resulting in instability to the structure. Specifically, members of the roof frame represent the most critical elements and that the members can result in large deformations as early as 4 minutes after the fire starts. Furthermore, effective utilization of fire protection can delay somewhat the fire effects and extend time to failure to 45 minutes and in one of the simulated cases, prevent structural instability. Thus, fire from LIB waste transport using train is a very realistic problem due to the thermal runaway, and the analysis performed in current study can be used as a preventive investigation technique for buildings that may be exposed to the train fire risk.","PeriodicalId":292984,"journal":{"name":"Journal of Architectural Environment & Structural Engineering Research","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Simulation of Battery Fire on a Large Steel Frame Structure due to Depleted Battery Piles\",\"authors\":\"N. Braxtan, J. Núñez, Shen-En Chen, Tiefu Zhao, Lynn Harris, D. Cook\",\"doi\":\"10.30564/jaeser.v5i3.4985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium ion batteries (LIB) can rupture and result in thermal runaway and battery fires. In the process of transporting lithium ion batteries using trains, the massive collection of batteries can cause train fire and pose significant danger to the public. This is especially critical when the fire occurs amid a heavily populated metropolitan environment. This paper reports the 3D analysis of a warehouse with possible train fire due to LIB rupture and the fire propagation at a rail yard. Six critical fire cases with the battery train in close vicinity to the warehouse were considered. The six fire cases are the worst-case scenarios of a Monte Carlo simulation of different fire cases that may occur to an actual steel storage facility at the Capital Railyard, Raleigh, North Carolina. A 3D finite element (FE) frame model was constructed for the steel warehouse and the most critical fire cases were simulated. The results indicated that several structural components of the warehouse would experience large stresses and deflections during the simulated battery fires and resulting in instability to the structure. Specifically, members of the roof frame represent the most critical elements and that the members can result in large deformations as early as 4 minutes after the fire starts. Furthermore, effective utilization of fire protection can delay somewhat the fire effects and extend time to failure to 45 minutes and in one of the simulated cases, prevent structural instability. Thus, fire from LIB waste transport using train is a very realistic problem due to the thermal runaway, and the analysis performed in current study can be used as a preventive investigation technique for buildings that may be exposed to the train fire risk.\",\"PeriodicalId\":292984,\"journal\":{\"name\":\"Journal of Architectural Environment & Structural Engineering Research\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Architectural Environment & Structural Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jaeser.v5i3.4985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Architectural Environment & Structural Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jaeser.v5i3.4985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LIB)可能破裂并导致热失控和电池火灾。在使用火车运输锂离子电池的过程中,电池的大量收集可能导致火车起火,对公众构成重大危险。当火灾发生在人口稠密的大都市环境中时,这一点尤为重要。本文报道了一个铁路货场仓库因LIB断裂可能发生火车火灾的三维分析和火灾蔓延情况。考虑了电池列车在仓库附近发生的六起严重火灾。这六个火灾案例是蒙特卡罗模拟的最坏情况,这些火灾案例可能发生在北卡罗来纳州罗利首府铁路场的实际钢铁储存设施中。建立了钢质仓库的三维有限元框架模型,并对最关键的火灾情况进行了模拟。结果表明,在模拟电池火灾过程中,仓库的几个结构部件会受到较大的应力和挠度,导致结构不稳定。具体来说,屋顶框架的构件是最关键的构件,这些构件可能在火灾开始后4分钟就会产生巨大的变形。此外,有效利用防火措施可以在一定程度上延缓火灾影响,将失效时间延长至45分钟,并在一个模拟案例中防止结构失稳。因此,由于热失控,使用火车运输LIB废物引起的火灾是一个非常现实的问题,本研究的分析可以作为可能暴露于火车火灾风险的建筑物的预防性调查技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Simulation of Battery Fire on a Large Steel Frame Structure due to Depleted Battery Piles
Lithium ion batteries (LIB) can rupture and result in thermal runaway and battery fires. In the process of transporting lithium ion batteries using trains, the massive collection of batteries can cause train fire and pose significant danger to the public. This is especially critical when the fire occurs amid a heavily populated metropolitan environment. This paper reports the 3D analysis of a warehouse with possible train fire due to LIB rupture and the fire propagation at a rail yard. Six critical fire cases with the battery train in close vicinity to the warehouse were considered. The six fire cases are the worst-case scenarios of a Monte Carlo simulation of different fire cases that may occur to an actual steel storage facility at the Capital Railyard, Raleigh, North Carolina. A 3D finite element (FE) frame model was constructed for the steel warehouse and the most critical fire cases were simulated. The results indicated that several structural components of the warehouse would experience large stresses and deflections during the simulated battery fires and resulting in instability to the structure. Specifically, members of the roof frame represent the most critical elements and that the members can result in large deformations as early as 4 minutes after the fire starts. Furthermore, effective utilization of fire protection can delay somewhat the fire effects and extend time to failure to 45 minutes and in one of the simulated cases, prevent structural instability. Thus, fire from LIB waste transport using train is a very realistic problem due to the thermal runaway, and the analysis performed in current study can be used as a preventive investigation technique for buildings that may be exposed to the train fire risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of Spatial Disorientation and Wayfinding Challenges in Buildings Using Axial Analysis: A Case of Hospital Buildings in Nigeria Environmental Impact Assessment of Building Materials Using Life Cycle Assessment Understanding the Challenges of Implementing Green Roofs in Multi-Family Apartment Buildings: A Case Study in Khulna Sustainability of Bridges: Risk Mitigation for Natural Hazards Asphalt Pavement Temperature Fluctuation: Impacts and solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1