二维半导体器件静电电位分布发生器

Seung-Cheol Han, Jonghyun Choi, Sung-Min Hong
{"title":"二维半导体器件静电电位分布发生器","authors":"Seung-Cheol Han, Jonghyun Choi, Sung-Min Hong","doi":"10.23919/SISPAD49475.2020.9241661","DOIUrl":null,"url":null,"abstract":"As efficiency is one of the bottlenecks of device simulation, we propose to employ deep neural networks to generate two-dimensional electrostatic potential profiles for efficiency. Supervising with previously obtained simulation results for various BJT devices, we train deep neural networks to generate an electrostatic potential profile as an initial guess for a non-equilibrium condition with estimating carrier densities by the frozen field simulation. With the generated potential profiles, we significantly reduce the number of Newton iterations without loss of accuracy.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Electrostatic Potential Profile Generator for Two-Dimensional Semiconductor Devices\",\"authors\":\"Seung-Cheol Han, Jonghyun Choi, Sung-Min Hong\",\"doi\":\"10.23919/SISPAD49475.2020.9241661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As efficiency is one of the bottlenecks of device simulation, we propose to employ deep neural networks to generate two-dimensional electrostatic potential profiles for efficiency. Supervising with previously obtained simulation results for various BJT devices, we train deep neural networks to generate an electrostatic potential profile as an initial guess for a non-equilibrium condition with estimating carrier densities by the frozen field simulation. With the generated potential profiles, we significantly reduce the number of Newton iterations without loss of accuracy.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于效率是器件仿真的瓶颈之一,我们提出采用深度神经网络生成二维静电势分布图以提高效率。在已有的各种BJT器件的模拟结果的指导下,我们训练深度神经网络生成静电势分布,作为对非平衡条件的初始猜测,并通过冻结场模拟估计载流子密度。有了生成的潜在轮廓,我们显著地减少了牛顿迭代的次数而不损失精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrostatic Potential Profile Generator for Two-Dimensional Semiconductor Devices
As efficiency is one of the bottlenecks of device simulation, we propose to employ deep neural networks to generate two-dimensional electrostatic potential profiles for efficiency. Supervising with previously obtained simulation results for various BJT devices, we train deep neural networks to generate an electrostatic potential profile as an initial guess for a non-equilibrium condition with estimating carrier densities by the frozen field simulation. With the generated potential profiles, we significantly reduce the number of Newton iterations without loss of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Device Degradation Estimation by Machine Learning of Gate Waveforms Numerical Solution of the Constrained Wigner Equation Nanoscale FET: How To Make Atomistic Simulation Versatile, Predictive, and Fast at 5nm Node and Below Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework Analytical Formulae for the Surface Green’s Functions of Graphene and 1T’ MoS2 Nanoribbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1