J. Liang, R. Ramos, J. Dijon, H. Okuno, D. Kalita, D. Renaud, J. Lee, V. Georgiev, S. Berrada, T. Sadi, A. Asenov, B. Uhlig, K. Lilienthal, A. Dhavamani, F. Könemann, B. Gotsmann, G. Goncalves, B. Chen, K. Teo, R. Pandey, A. Todri-Sanial
{"title":"基于物理的pt盐掺杂碳纳米管局部互连研究","authors":"J. Liang, R. Ramos, J. Dijon, H. Okuno, D. Kalita, D. Renaud, J. Lee, V. Georgiev, S. Berrada, T. Sadi, A. Asenov, B. Uhlig, K. Lilienthal, A. Dhavamani, F. Könemann, B. Gotsmann, G. Goncalves, B. Chen, K. Teo, R. Pandey, A. Todri-Sanial","doi":"10.1109/IEDM.2017.8268502","DOIUrl":null,"url":null,"abstract":"We investigate, by combining physical and electrical measurements together with an atomistic-to-circuit modeling approach, the conductance of doped carbon nanotubes (CNTs) and their eligibility as possible candidate for next generation back-end-of-line (BEOL) interconnects. Ab-initio simulations predict a doping-related shift of the Fermi level, which reduces shell chirality variability and improves electrical conductance up to 90% by converting semiconducting shells to metallic. Circuit-level simulations predict up to 88% signal delay improvement with doped vs. pristine CNT. Electrical measurements of Pt-salt doped CNTs provide up to 50% of resistance reduction which is a milestone result for future CNT interconnect technology.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A physics-based investigation of Pt-salt doped carbon nanotubes for local interconnects\",\"authors\":\"J. Liang, R. Ramos, J. Dijon, H. Okuno, D. Kalita, D. Renaud, J. Lee, V. Georgiev, S. Berrada, T. Sadi, A. Asenov, B. Uhlig, K. Lilienthal, A. Dhavamani, F. Könemann, B. Gotsmann, G. Goncalves, B. Chen, K. Teo, R. Pandey, A. Todri-Sanial\",\"doi\":\"10.1109/IEDM.2017.8268502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate, by combining physical and electrical measurements together with an atomistic-to-circuit modeling approach, the conductance of doped carbon nanotubes (CNTs) and their eligibility as possible candidate for next generation back-end-of-line (BEOL) interconnects. Ab-initio simulations predict a doping-related shift of the Fermi level, which reduces shell chirality variability and improves electrical conductance up to 90% by converting semiconducting shells to metallic. Circuit-level simulations predict up to 88% signal delay improvement with doped vs. pristine CNT. Electrical measurements of Pt-salt doped CNTs provide up to 50% of resistance reduction which is a milestone result for future CNT interconnect technology.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A physics-based investigation of Pt-salt doped carbon nanotubes for local interconnects
We investigate, by combining physical and electrical measurements together with an atomistic-to-circuit modeling approach, the conductance of doped carbon nanotubes (CNTs) and their eligibility as possible candidate for next generation back-end-of-line (BEOL) interconnects. Ab-initio simulations predict a doping-related shift of the Fermi level, which reduces shell chirality variability and improves electrical conductance up to 90% by converting semiconducting shells to metallic. Circuit-level simulations predict up to 88% signal delay improvement with doped vs. pristine CNT. Electrical measurements of Pt-salt doped CNTs provide up to 50% of resistance reduction which is a milestone result for future CNT interconnect technology.