基于近似计算的语音识别节能可重构混合DNN结构

Bo Liu, Shisheng Guo, Hai Qin, Yu Gong, Jinjiang Yang, Wei-qi Ge, Jun Yang
{"title":"基于近似计算的语音识别节能可重构混合DNN结构","authors":"Bo Liu, Shisheng Guo, Hai Qin, Yu Gong, Jinjiang Yang, Wei-qi Ge, Jun Yang","doi":"10.1109/ICDSP.2018.8631826","DOIUrl":null,"url":null,"abstract":"This paper proposes an hybrid deep neural network (DNN) for speech recognition and an energy-efficient reconfigurable architecture with approximate computing for accelerating the DNN. The hybrid DNN consists of two network models: a binary weight network (BWN) for twenty key words recognition; a recurrent neural network (RNN) for processing acoustic model of high precision common words recognition. To accelerate the hybrid DNN and reduce the energy cost, we propose a digital-analog mixed reconfigurable architecture with approximate computing units, including: a BWN accelerator with analog multi-chain delay-addition units for bit-wise approximate computing, and a RNN accelerator with approximate multiplication units for different calculation accuracy requirements. Implementation and simulation with TSMC 28nm HPC+ process technology, the energy efficiency of proposed architecture can achieves 163.8TOPS/W for twenty key words recognition and 3.3TOPS/W for common words recognition. Comparing with State-of-the-Art architectures, this work achieves over 1.7X better in energy efficiency with approximate computing.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Energy-efficient Reconfigurable Hybrid DNN Architecture for Speech Recognition with Approximate Computing\",\"authors\":\"Bo Liu, Shisheng Guo, Hai Qin, Yu Gong, Jinjiang Yang, Wei-qi Ge, Jun Yang\",\"doi\":\"10.1109/ICDSP.2018.8631826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an hybrid deep neural network (DNN) for speech recognition and an energy-efficient reconfigurable architecture with approximate computing for accelerating the DNN. The hybrid DNN consists of two network models: a binary weight network (BWN) for twenty key words recognition; a recurrent neural network (RNN) for processing acoustic model of high precision common words recognition. To accelerate the hybrid DNN and reduce the energy cost, we propose a digital-analog mixed reconfigurable architecture with approximate computing units, including: a BWN accelerator with analog multi-chain delay-addition units for bit-wise approximate computing, and a RNN accelerator with approximate multiplication units for different calculation accuracy requirements. Implementation and simulation with TSMC 28nm HPC+ process technology, the energy efficiency of proposed architecture can achieves 163.8TOPS/W for twenty key words recognition and 3.3TOPS/W for common words recognition. Comparing with State-of-the-Art architectures, this work achieves over 1.7X better in energy efficiency with approximate computing.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于语音识别的混合深度神经网络(DNN),并提出了一种具有近似计算的节能可重构结构来加速DNN。混合深度神经网络由两个网络模型组成:用于20个关键字识别的二元权重网络(BWN);一种用于处理高精度常用词识别声学模型的递归神经网络(RNN)。为了加速混合深度神经网络并降低能源成本,我们提出了一种具有近似计算单元的数模混合可重构架构,包括:具有模拟多链延迟加法单元的BWN加速器,用于按位近似计算,以及具有近似乘法单元的RNN加速器,用于不同的计算精度要求。采用台积电28nm HPC+制程技术进行实现和仿真,所提架构的能效可达到163.8TOPS/W的20关键字识别和3.3TOPS/W的常用字识别。与最先进的架构相比,通过近似计算,该工作的能效提高了1.7倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Energy-efficient Reconfigurable Hybrid DNN Architecture for Speech Recognition with Approximate Computing
This paper proposes an hybrid deep neural network (DNN) for speech recognition and an energy-efficient reconfigurable architecture with approximate computing for accelerating the DNN. The hybrid DNN consists of two network models: a binary weight network (BWN) for twenty key words recognition; a recurrent neural network (RNN) for processing acoustic model of high precision common words recognition. To accelerate the hybrid DNN and reduce the energy cost, we propose a digital-analog mixed reconfigurable architecture with approximate computing units, including: a BWN accelerator with analog multi-chain delay-addition units for bit-wise approximate computing, and a RNN accelerator with approximate multiplication units for different calculation accuracy requirements. Implementation and simulation with TSMC 28nm HPC+ process technology, the energy efficiency of proposed architecture can achieves 163.8TOPS/W for twenty key words recognition and 3.3TOPS/W for common words recognition. Comparing with State-of-the-Art architectures, this work achieves over 1.7X better in energy efficiency with approximate computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1