Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu
{"title":"面向目标情感分类的多通道卷积神经网络","authors":"Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu","doi":"10.1109/ICMLC48188.2019.8949286","DOIUrl":null,"url":null,"abstract":"In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Channel Convolutional Neural Network for Targeted Sentiment Classification\",\"authors\":\"Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu\",\"doi\":\"10.1109/ICMLC48188.2019.8949286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Channel Convolutional Neural Network for Targeted Sentiment Classification
In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.