基于稀疏问卷优化的简化保险申请

S. Liu, Guandong Xu, Xiao Zhu, Zili Zhou
{"title":"基于稀疏问卷优化的简化保险申请","authors":"S. Liu, Guandong Xu, Xiao Zhu, Zili Zhou","doi":"10.1109/BESC.2017.8256362","DOIUrl":null,"url":null,"abstract":"Life insurance application requires in-person meetings with underwriters, tedious paperwork, and an average waiting period of six weeks before an offer can be made. This outdated process has become a barrier for broader consumer adoption, resulting large coverage gap. In this work, we aim to closing this gap by leveraging data mining techniques to optimize the insurance questionnaire form. Our experiment on 10 years of insurance application data has identified that only ∼2% of all questions have shown high relevancy to determining the risks of applicants, resulting a significantly simplified questionnaire.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards simplified insurance application via sparse questionnaire optimization\",\"authors\":\"S. Liu, Guandong Xu, Xiao Zhu, Zili Zhou\",\"doi\":\"10.1109/BESC.2017.8256362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Life insurance application requires in-person meetings with underwriters, tedious paperwork, and an average waiting period of six weeks before an offer can be made. This outdated process has become a barrier for broader consumer adoption, resulting large coverage gap. In this work, we aim to closing this gap by leveraging data mining techniques to optimize the insurance questionnaire form. Our experiment on 10 years of insurance application data has identified that only ∼2% of all questions have shown high relevancy to determining the risks of applicants, resulting a significantly simplified questionnaire.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人寿保险申请需要与保险公司亲自会面,繁琐的文书工作,平均等待六周才能做出报价。这种过时的流程已经成为更广泛的消费者采用的障碍,导致很大的覆盖差距。在这项工作中,我们的目标是通过利用数据挖掘技术来优化保险问卷形式来缩小这一差距。我们对10年的保险申请数据进行了实验,发现只有约2%的问题与确定申请人的风险高度相关,从而大大简化了问卷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards simplified insurance application via sparse questionnaire optimization
Life insurance application requires in-person meetings with underwriters, tedious paperwork, and an average waiting period of six weeks before an offer can be made. This outdated process has become a barrier for broader consumer adoption, resulting large coverage gap. In this work, we aim to closing this gap by leveraging data mining techniques to optimize the insurance questionnaire form. Our experiment on 10 years of insurance application data has identified that only ∼2% of all questions have shown high relevancy to determining the risks of applicants, resulting a significantly simplified questionnaire.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IBM data governance solutions Causalities among momentum, transparency and media in China Can Bayesian poisson tensor factorization automatically extract interesting events from massive media reports? The influence of big data and informatization on tourism industry Discover social relations and activities from ancient Chinese history book Zuo Zhuan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1