组合多目标优化中分解与抓取的混合

Ahmad Alhindi, Qingfu Zhang, E. Tsang
{"title":"组合多目标优化中分解与抓取的混合","authors":"Ahmad Alhindi, Qingfu Zhang, E. Tsang","doi":"10.1109/UKCI.2014.6930173","DOIUrl":null,"url":null,"abstract":"This paper proposes an idea of using heuristic local search procedures specific for single-objective optimisation in multiobjectie evolutionary algorithms (MOEAs). In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) hybridised with a multi-start single-objective metaheuristic called greedy randomised adaptive search procedure (GRASP). In our method a multiobjetive optimisation problem (MOP) is decomposed into a number of single-objecive subproblems and optimised in parallel by using neighbourhood information. The proposed GRASP alternates between subproblems to help them escape local Pareto optimal solutions. Experimental results have demonstrated that MOEA/D with GRASP outperforms the classical MOEA/D algorithm on the multiobjective 0-1 knapsack problem that is commonly used in the literature. It has also demonstrated that the use of greedy genetic crossover can significantly improve the algorithm performance.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation\",\"authors\":\"Ahmad Alhindi, Qingfu Zhang, E. Tsang\",\"doi\":\"10.1109/UKCI.2014.6930173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an idea of using heuristic local search procedures specific for single-objective optimisation in multiobjectie evolutionary algorithms (MOEAs). In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) hybridised with a multi-start single-objective metaheuristic called greedy randomised adaptive search procedure (GRASP). In our method a multiobjetive optimisation problem (MOP) is decomposed into a number of single-objecive subproblems and optimised in parallel by using neighbourhood information. The proposed GRASP alternates between subproblems to help them escape local Pareto optimal solutions. Experimental results have demonstrated that MOEA/D with GRASP outperforms the classical MOEA/D algorithm on the multiobjective 0-1 knapsack problem that is commonly used in the literature. It has also demonstrated that the use of greedy genetic crossover can significantly improve the algorithm performance.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了在多目标进化算法(moea)中使用启发式局部搜索过程进行单目标优化的思想。本文将基于分解的多目标进化算法(MOEA/D)与多起点单目标元启发式贪婪随机自适应搜索过程(GRASP)相结合。该方法将多目标优化问题分解为多个单目标子问题,并利用邻域信息进行并行优化。所提出的GRASP在子问题之间交替进行,以帮助它们逃避局部帕累托最优解。实验结果表明,在文献中常用的多目标0-1背包问题上,基于GRASP的MOEA/D算法优于经典的MOEA/D算法。实验还表明,使用贪婪遗传交叉可以显著提高算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation
This paper proposes an idea of using heuristic local search procedures specific for single-objective optimisation in multiobjectie evolutionary algorithms (MOEAs). In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) hybridised with a multi-start single-objective metaheuristic called greedy randomised adaptive search procedure (GRASP). In our method a multiobjetive optimisation problem (MOP) is decomposed into a number of single-objecive subproblems and optimised in parallel by using neighbourhood information. The proposed GRASP alternates between subproblems to help them escape local Pareto optimal solutions. Experimental results have demonstrated that MOEA/D with GRASP outperforms the classical MOEA/D algorithm on the multiobjective 0-1 knapsack problem that is commonly used in the literature. It has also demonstrated that the use of greedy genetic crossover can significantly improve the algorithm performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PermGA algorithm for a sequential optimal space filling DoE framework Modeling neural plasticity in echo state networks for time series prediction Hybridisation of decomposition and GRASP for combinatorial multiobjective optimisation Adaptive mutation in dynamic environments Automatic image annotation with long distance spatial-context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1