基于指数golomb编码的生物医学信息高效无损压缩方法及其ASIP实现

Shoko Nakatsuka, Takashi Hamabe, Y. Takeuchi, M. Imai
{"title":"基于指数golomb编码的生物医学信息高效无损压缩方法及其ASIP实现","authors":"Shoko Nakatsuka, Takashi Hamabe, Y. Takeuchi, M. Imai","doi":"10.1109/BioCAS.2013.6679719","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient lossless data compression method, based on exponential-Golomb coding, that takes advantage of the characteristics of biomedical information, and an instruction set and implementation of an application domain specific instruction set processor (ASIP) for biomedical information compression. Simulation results, using intravesical pressure and rectum pressure data as benchmarks, show that the data compression ratio of the proposed method is about 77%, and execution cycles and energy consumption are reduced about 28% and 27%, respectively, compared to those by a conventional RISC processor.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An efficient lossless data compression method based on exponential-Golomb coding for biomedical information and its implementation using ASIP technology\",\"authors\":\"Shoko Nakatsuka, Takashi Hamabe, Y. Takeuchi, M. Imai\",\"doi\":\"10.1109/BioCAS.2013.6679719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an efficient lossless data compression method, based on exponential-Golomb coding, that takes advantage of the characteristics of biomedical information, and an instruction set and implementation of an application domain specific instruction set processor (ASIP) for biomedical information compression. Simulation results, using intravesical pressure and rectum pressure data as benchmarks, show that the data compression ratio of the proposed method is about 77%, and execution cycles and energy consumption are reduced about 28% and 27%, respectively, compared to those by a conventional RISC processor.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用生物医学信息的特点,提出了一种基于指数- golomb编码的高效无损数据压缩方法,提出了用于生物医学信息压缩的指令集及其应用领域专用指令集处理器(ASIP)的实现方法。以膀胱压力和直肠压力数据为基准的仿真结果表明,与传统的RISC处理器相比,该方法的数据压缩比约为77%,执行周期和能耗分别减少28%和27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient lossless data compression method based on exponential-Golomb coding for biomedical information and its implementation using ASIP technology
This paper proposes an efficient lossless data compression method, based on exponential-Golomb coding, that takes advantage of the characteristics of biomedical information, and an instruction set and implementation of an application domain specific instruction set processor (ASIP) for biomedical information compression. Simulation results, using intravesical pressure and rectum pressure data as benchmarks, show that the data compression ratio of the proposed method is about 77%, and execution cycles and energy consumption are reduced about 28% and 27%, respectively, compared to those by a conventional RISC processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-electrode amperometric biosensor for neurotransmitters detection A portable hardware implementation for temporal laser speckle imaging Automatic detection of sleep spindles using Teager energy and spectral edge frequency A 430nW 64nV/vHz current-reuse telescopic amplifier for neural recording applications Output stage of a current-steering multipolar and multisite deep brain stimulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1