分位数估计中罗宾斯-门罗算法的鲁棒调谐——在风电场资产管理中的应用

B. Iooss, J. Lonchampt
{"title":"分位数估计中罗宾斯-门罗算法的鲁棒调谐——在风电场资产管理中的应用","authors":"B. Iooss, J. Lonchampt","doi":"10.3850/978-981-18-2016-8_084-cd","DOIUrl":null,"url":null,"abstract":"In uncertainty quantification of numerical simulation model outputs, the classical approaches for quantile estimation requires the availability of the full sample of the studied variable. This approach is sometimes not suitable as large ensembles of simulation runs need to gather a prohibitively large amount of data and computer memory. This problem can be solved thanks to an on-the-fly (iterative) approach based on the Robbins-Monro algorithm. We numerically study this algorithm for estimating a discretized quantile function from samples of limited size (a few hundreds observations). We also define “robust” values of the algorithm parameters in two practical situations: when the final number of the model runs N is a priori fixed and when N is unknown in advance (it can then be minimized during the study in order to save cpu time cost). This method is applied to the estimation of indicators in the field of engineering asset management for offshore wind generation. We show how the proposed algorithm improves the efficiency of the tool to support risk informed decision making in the field of offshore wind generation.","PeriodicalId":187633,"journal":{"name":"Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Tuning of Robbins-Monro Algorithm for Quantile Estimation -- Application to Wind-Farm Asset Management\",\"authors\":\"B. Iooss, J. Lonchampt\",\"doi\":\"10.3850/978-981-18-2016-8_084-cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In uncertainty quantification of numerical simulation model outputs, the classical approaches for quantile estimation requires the availability of the full sample of the studied variable. This approach is sometimes not suitable as large ensembles of simulation runs need to gather a prohibitively large amount of data and computer memory. This problem can be solved thanks to an on-the-fly (iterative) approach based on the Robbins-Monro algorithm. We numerically study this algorithm for estimating a discretized quantile function from samples of limited size (a few hundreds observations). We also define “robust” values of the algorithm parameters in two practical situations: when the final number of the model runs N is a priori fixed and when N is unknown in advance (it can then be minimized during the study in order to save cpu time cost). This method is applied to the estimation of indicators in the field of engineering asset management for offshore wind generation. We show how the proposed algorithm improves the efficiency of the tool to support risk informed decision making in the field of offshore wind generation.\",\"PeriodicalId\":187633,\"journal\":{\"name\":\"Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3850/978-981-18-2016-8_084-cd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/978-981-18-2016-8_084-cd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数值模拟模型输出的不确定性量化中,经典的分位数估计方法要求所研究变量的全样本可用性。这种方法有时不适合,因为大规模的模拟运行需要收集大量的数据和计算机内存。这个问题可以通过基于罗宾斯-门罗算法的动态(迭代)方法来解决。我们对该算法进行了数值研究,用于从有限大小的样本(几百个观测值)估计离散分位数函数。我们还在两种实际情况下定义了算法参数的“鲁棒”值:当模型运行的最终次数N是先验固定的,以及当N事先未知时(然后可以在研究过程中将其最小化,以节省cpu时间成本)。该方法应用于海上风电工程资产管理领域的指标估计。我们展示了所提出的算法如何提高工具的效率,以支持海上风力发电领域的风险知情决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Tuning of Robbins-Monro Algorithm for Quantile Estimation -- Application to Wind-Farm Asset Management
In uncertainty quantification of numerical simulation model outputs, the classical approaches for quantile estimation requires the availability of the full sample of the studied variable. This approach is sometimes not suitable as large ensembles of simulation runs need to gather a prohibitively large amount of data and computer memory. This problem can be solved thanks to an on-the-fly (iterative) approach based on the Robbins-Monro algorithm. We numerically study this algorithm for estimating a discretized quantile function from samples of limited size (a few hundreds observations). We also define “robust” values of the algorithm parameters in two practical situations: when the final number of the model runs N is a priori fixed and when N is unknown in advance (it can then be minimized during the study in order to save cpu time cost). This method is applied to the estimation of indicators in the field of engineering asset management for offshore wind generation. We show how the proposed algorithm improves the efficiency of the tool to support risk informed decision making in the field of offshore wind generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Use Prescriptive Maintenance to Construct Robust Master Production Schedules Robust Sensor Fault Detection for Linear Parameter-Varying Systems using Interval Observer Knowledge-Based Approach for System Level Electromagnetic Safety Analysis A State-of-the-Art Review on IC EMC Reliability Empirical Analysis of Ship Anchor Drag Incidents for Cable Burial Risk Assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1