视频序列中物体遮挡情况下的运动物体检测

Dianting Liu, M. Shyu, Qiusha Zhu, Shu‐Ching Chen
{"title":"视频序列中物体遮挡情况下的运动物体检测","authors":"Dianting Liu, M. Shyu, Qiusha Zhu, Shu‐Ching Chen","doi":"10.1109/ISM.2011.50","DOIUrl":null,"url":null,"abstract":"It is a great challenge to detect an object that is overlapped or occluded by other objects in images. For moving objects in a video sequence, their movements can bring extra spatio-temporal information of successive frames, which helps object detection, especially for occluded objects. This paper proposes a moving object detection approach for occluded objects in a video sequence with the assist of the SPCPE (Simultaneous Partition and Class Parameter Estimation) unsupervised video segmentation method. Based on the preliminary foreground estimation result from SPCPE and object detection information from the previous frame, an n-steps search (NSS) method is utilized to identify the location of the moving objects, followed by a size-adjustment method that adjusts the bounding boxes of the objects. Several experimental results show that our proposed approach achieves good detection performance under object occlusion situations in serial frames of a video sequence.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Moving Object Detection under Object Occlusion Situations in Video Sequences\",\"authors\":\"Dianting Liu, M. Shyu, Qiusha Zhu, Shu‐Ching Chen\",\"doi\":\"10.1109/ISM.2011.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a great challenge to detect an object that is overlapped or occluded by other objects in images. For moving objects in a video sequence, their movements can bring extra spatio-temporal information of successive frames, which helps object detection, especially for occluded objects. This paper proposes a moving object detection approach for occluded objects in a video sequence with the assist of the SPCPE (Simultaneous Partition and Class Parameter Estimation) unsupervised video segmentation method. Based on the preliminary foreground estimation result from SPCPE and object detection information from the previous frame, an n-steps search (NSS) method is utilized to identify the location of the moving objects, followed by a size-adjustment method that adjusts the bounding boxes of the objects. Several experimental results show that our proposed approach achieves good detection performance under object occlusion situations in serial frames of a video sequence.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

检测图像中被其他物体重叠或遮挡的物体是一个很大的挑战。对于视频序列中运动的物体,其运动可以带来连续帧的额外时空信息,有助于物体的检测,特别是对遮挡物体的检测。本文提出了一种利用sppe (Simultaneous Partition and Class Parameter Estimation)无监督视频分割方法对视频序列中被遮挡的运动目标进行检测的方法。基于sppe的初步前景估计结果和前一帧的目标检测信息,采用n步搜索(n-steps search, NSS)方法识别运动目标的位置,然后采用尺寸调整方法调整目标的边界框。实验结果表明,该方法在视频序列中连续帧的目标遮挡情况下具有良好的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving Object Detection under Object Occlusion Situations in Video Sequences
It is a great challenge to detect an object that is overlapped or occluded by other objects in images. For moving objects in a video sequence, their movements can bring extra spatio-temporal information of successive frames, which helps object detection, especially for occluded objects. This paper proposes a moving object detection approach for occluded objects in a video sequence with the assist of the SPCPE (Simultaneous Partition and Class Parameter Estimation) unsupervised video segmentation method. Based on the preliminary foreground estimation result from SPCPE and object detection information from the previous frame, an n-steps search (NSS) method is utilized to identify the location of the moving objects, followed by a size-adjustment method that adjusts the bounding boxes of the objects. Several experimental results show that our proposed approach achieves good detection performance under object occlusion situations in serial frames of a video sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Subjective Evaluation of 3D Iptv Broadcasting Implementations Considering Coding and Transmission Degradation A Low Memory Requirements Execution Flow for the Non-Uniform Grid Projection Super-Resolution Algorithm 3D Image Browsing on Mobile Devices Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Automatic Bird Species Identification for Large Number of Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1