FPGA互连中多故障的自动诊断方法

T. N. Kumar, C. Inn
{"title":"FPGA互连中多故障的自动诊断方法","authors":"T. N. Kumar, C. Inn","doi":"10.1109/ASQED.2009.5206233","DOIUrl":null,"url":null,"abstract":"This paper presents a new fine-grain diagnostics technique that is able to locate multiple interconnect faults of an FPGA. The proposed methodology uses the concept of remove, reroute and replace technique to automatically diagnose the precise location of the faulty interconnect resources and to self-repair them. In this technique, the net under test (NUT) is removed completely and rerouted using the unused fault-free net, and then the original NUT is replaced segment by segment for testing. The fault models we use are stuck at open, stuck at close and resistive open. The proposed methodology was implemented and tested on the Spartan series FPGAs via an automated approach utilizing parallel port communication. The automation program has been written in PERL and C languages. The experiment results show that approximately 34 faulty resources could be tested per second. Moreover this method uses minimal input output blocks. This proposed technique provides high degree of resolution in exactly locating the multiple interconnect faults and thus provides 100% fault coverage.","PeriodicalId":437303,"journal":{"name":"2009 1st Asia Symposium on Quality Electronic Design","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An automated approach for the diagnosis of multiple faults in FPGA interconnects\",\"authors\":\"T. N. Kumar, C. Inn\",\"doi\":\"10.1109/ASQED.2009.5206233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new fine-grain diagnostics technique that is able to locate multiple interconnect faults of an FPGA. The proposed methodology uses the concept of remove, reroute and replace technique to automatically diagnose the precise location of the faulty interconnect resources and to self-repair them. In this technique, the net under test (NUT) is removed completely and rerouted using the unused fault-free net, and then the original NUT is replaced segment by segment for testing. The fault models we use are stuck at open, stuck at close and resistive open. The proposed methodology was implemented and tested on the Spartan series FPGAs via an automated approach utilizing parallel port communication. The automation program has been written in PERL and C languages. The experiment results show that approximately 34 faulty resources could be tested per second. Moreover this method uses minimal input output blocks. This proposed technique provides high degree of resolution in exactly locating the multiple interconnect faults and thus provides 100% fault coverage.\",\"PeriodicalId\":437303,\"journal\":{\"name\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASQED.2009.5206233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 1st Asia Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASQED.2009.5206233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种新的细粒度诊断技术,可以对FPGA的多个互连故障进行定位。该方法采用移除、重新路由和替换技术的概念,自动诊断故障互连资源的精确位置并进行自我修复。在这种技术中,被测网(NUT)被完全移除,使用未使用的无故障网重新路由,然后将原始的NUT一段一段地替换以进行测试。我们使用的故障模型有开卡、关卡和电阻开卡。所提出的方法通过利用并行端口通信的自动化方法在Spartan系列fpga上实现和测试。自动化程序用PERL和C语言编写。实验结果表明,该方法每秒可测试34个故障资源。此外,该方法使用最小的输入输出块。该技术在精确定位多个互连故障方面提供了很高的分辨率,从而提供了100%的故障覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An automated approach for the diagnosis of multiple faults in FPGA interconnects
This paper presents a new fine-grain diagnostics technique that is able to locate multiple interconnect faults of an FPGA. The proposed methodology uses the concept of remove, reroute and replace technique to automatically diagnose the precise location of the faulty interconnect resources and to self-repair them. In this technique, the net under test (NUT) is removed completely and rerouted using the unused fault-free net, and then the original NUT is replaced segment by segment for testing. The fault models we use are stuck at open, stuck at close and resistive open. The proposed methodology was implemented and tested on the Spartan series FPGAs via an automated approach utilizing parallel port communication. The automation program has been written in PERL and C languages. The experiment results show that approximately 34 faulty resources could be tested per second. Moreover this method uses minimal input output blocks. This proposed technique provides high degree of resolution in exactly locating the multiple interconnect faults and thus provides 100% fault coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next generation I/O power delivery design through SIPD co-analysis & comprehensive platform validation Effect of local random variation on gate-level delay and leakage statistical analysis Mutual exploration of FinFET technology and circuit design options for implementing compact brute-force latches Automatic error recovery in targetless logic emulation An automated approach for the diagnosis of multiple faults in FPGA interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1