Omar Hanif, Medha Chatterjee, Nihar Deshpande, Abhishek Bhatnagar, G. U. B. Babu
{"title":"基于卡尔曼滤波的非线性过程分数阶PID控制器及其变体的设计与分析","authors":"Omar Hanif, Medha Chatterjee, Nihar Deshpande, Abhishek Bhatnagar, G. U. B. Babu","doi":"10.1109/iCCECE49321.2020.9231224","DOIUrl":null,"url":null,"abstract":"Nonlinear control study has evolved owing to the complexity of systems in multi-faceted disciplines. The most effective method of dealing with nonlinear systems is through linearization. Another revolution in the field of control is identifying the system with the help of fractional-order differential equations. Later, the fractional-order transfer function is calculated and controlled with the help of fractional-order controllers. This paper is a comprehensive work on a nonlinear system by taking a spherical tank case study. The work models the latter into multi-model integer order transfer functions (IOTF) then converts them into fractional-order transfer functions (FOTFs) via the frequency-domain method. It uses the Kalman filter algorithm to estimate the outputs of the various models of the multi-model bank. It then designs controllers, namely Proportional-Integral-Derivative (PID), Fractional-Order Proportional Integral Derivative (FOPID), and Multi-term Fractional-Order PID (MFOPIDs), using genetic algorithm. Subsequently, the paper thoroughly compares servo, regulatory, and robust responses of the PID controller and its variants.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Fractional-Order PID Controller and its variants for Nonlinear Process using Kalman Filter\",\"authors\":\"Omar Hanif, Medha Chatterjee, Nihar Deshpande, Abhishek Bhatnagar, G. U. B. Babu\",\"doi\":\"10.1109/iCCECE49321.2020.9231224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear control study has evolved owing to the complexity of systems in multi-faceted disciplines. The most effective method of dealing with nonlinear systems is through linearization. Another revolution in the field of control is identifying the system with the help of fractional-order differential equations. Later, the fractional-order transfer function is calculated and controlled with the help of fractional-order controllers. This paper is a comprehensive work on a nonlinear system by taking a spherical tank case study. The work models the latter into multi-model integer order transfer functions (IOTF) then converts them into fractional-order transfer functions (FOTFs) via the frequency-domain method. It uses the Kalman filter algorithm to estimate the outputs of the various models of the multi-model bank. It then designs controllers, namely Proportional-Integral-Derivative (PID), Fractional-Order Proportional Integral Derivative (FOPID), and Multi-term Fractional-Order PID (MFOPIDs), using genetic algorithm. Subsequently, the paper thoroughly compares servo, regulatory, and robust responses of the PID controller and its variants.\",\"PeriodicalId\":413847,\"journal\":{\"name\":\"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCCECE49321.2020.9231224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Fractional-Order PID Controller and its variants for Nonlinear Process using Kalman Filter
Nonlinear control study has evolved owing to the complexity of systems in multi-faceted disciplines. The most effective method of dealing with nonlinear systems is through linearization. Another revolution in the field of control is identifying the system with the help of fractional-order differential equations. Later, the fractional-order transfer function is calculated and controlled with the help of fractional-order controllers. This paper is a comprehensive work on a nonlinear system by taking a spherical tank case study. The work models the latter into multi-model integer order transfer functions (IOTF) then converts them into fractional-order transfer functions (FOTFs) via the frequency-domain method. It uses the Kalman filter algorithm to estimate the outputs of the various models of the multi-model bank. It then designs controllers, namely Proportional-Integral-Derivative (PID), Fractional-Order Proportional Integral Derivative (FOPID), and Multi-term Fractional-Order PID (MFOPIDs), using genetic algorithm. Subsequently, the paper thoroughly compares servo, regulatory, and robust responses of the PID controller and its variants.