Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov
{"title":"俄语文本修辞分析的数据驱动系统研究","authors":"Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov","doi":"10.18653/v1/W19-2711","DOIUrl":null,"url":null,"abstract":"Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.","PeriodicalId":243254,"journal":{"name":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards the Data-driven System for Rhetorical Parsing of Russian Texts\",\"authors\":\"Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov\",\"doi\":\"10.18653/v1/W19-2711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.\",\"PeriodicalId\":243254,\"journal\":{\"name\":\"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-2711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards the Data-driven System for Rhetorical Parsing of Russian Texts
Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.