模糊输入泊松医学图像抠图

Kamil Aktas, B. Dizdaroğlu
{"title":"模糊输入泊松医学图像抠图","authors":"Kamil Aktas, B. Dizdaroğlu","doi":"10.1109/BIYOMUT.2015.7369462","DOIUrl":null,"url":null,"abstract":"In this study, fuzzy input data has been considered for processing of Poisson medical image matting. Image matting is actually known as an image segmentation approach. But, fine detail information can be extracted from the background of the given image in the image matting. Although global Poisson image matting approach is applied to smoothed images, successful matting results can be obtained from medical images that may not be contain more fine detail information. In this study, fuzziness is included to the input data as a percent value and a generated result is compared with the classical Poisson image matting approach.","PeriodicalId":143218,"journal":{"name":"2015 19th National Biomedical Engineering Meeting (BIYOMUT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson medical image matting with fuzzy input\",\"authors\":\"Kamil Aktas, B. Dizdaroğlu\",\"doi\":\"10.1109/BIYOMUT.2015.7369462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, fuzzy input data has been considered for processing of Poisson medical image matting. Image matting is actually known as an image segmentation approach. But, fine detail information can be extracted from the background of the given image in the image matting. Although global Poisson image matting approach is applied to smoothed images, successful matting results can be obtained from medical images that may not be contain more fine detail information. In this study, fuzziness is included to the input data as a percent value and a generated result is compared with the classical Poisson image matting approach.\",\"PeriodicalId\":143218,\"journal\":{\"name\":\"2015 19th National Biomedical Engineering Meeting (BIYOMUT)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 19th National Biomedical Engineering Meeting (BIYOMUT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2015.7369462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 19th National Biomedical Engineering Meeting (BIYOMUT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2015.7369462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用模糊输入数据进行泊松医学图像抠图处理。图像抠图实际上是一种图像分割方法。但是,在图像抠图中可以从给定图像的背景中提取出精细的细节信息。虽然将全局泊松图像抠图方法应用于光滑图像,但对于可能不包含更精细细节信息的医学图像,也可以获得成功的抠图结果。在本研究中,模糊度作为一个百分比值包含在输入数据中,并将生成的结果与经典泊松图像抠图方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poisson medical image matting with fuzzy input
In this study, fuzzy input data has been considered for processing of Poisson medical image matting. Image matting is actually known as an image segmentation approach. But, fine detail information can be extracted from the background of the given image in the image matting. Although global Poisson image matting approach is applied to smoothed images, successful matting results can be obtained from medical images that may not be contain more fine detail information. In this study, fuzziness is included to the input data as a percent value and a generated result is compared with the classical Poisson image matting approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image processing based vascular network analysis Development and validation of a computational musculoskeletal model of the cat hind limb Hemodynamic examination of brain aneurysm based on Computational Fluid Dynamics (CFD) simulations Histological study of layer thickness in different cortical areas in rat Evoked potential in response to familiar and unfamiliar face Stimuli and their time-location analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1