Aprilia Putri Nardilasari, A. Hananto, Shofa Shofiah Hilabi, Tukino Tukino, Bayu Priyatna
{"title":"Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter","authors":"Aprilia Putri Nardilasari, A. Hananto, Shofa Shofiah Hilabi, Tukino Tukino, Bayu Priyatna","doi":"10.31328/jointecs.v8i1.4265","DOIUrl":null,"url":null,"abstract":"Stakeholders widely use sentiment analysis in assessing sentiment towards an object. In this research, the object to be taken is sentiment analysis of political figures for the 2024 presidential candidate which is being widely discussed by netizens, especially on Twitter. The issues raised are regarding the performance measurement of an algorithm in classifying sentiments, some algorithms often need a higher level of accuracy. This study aims to improve performance measures from previous studies using the Naïve Bayes algorithm which has a fairly low level of accuracy, and in this study the SVM algorithm was used. This study takes Twitter data related to presidential candidates to see public opinion for each presidential candidate. The data taken was Twitter data with the keywords Ganjar, Anies, Prabowo totaling 8,959 data taken on October 17-25 2022. The results of the test concluded that the SVM algorithm has a performance measure or quite high accuracy compared to the Naïve Bayes algorithm in previous studies only of 73.86% while the SVM algorithm gets an average accuracy value of 98.61%, namely the Ganjar Pranowo dataset, then 98.81% precision, 99.79% recall. And for the proportion of sentiment, the positive sentiment obtained by Ganjar was higher than the other presidential candidates, namely 55%, Prabowo 30% and Anies 15%, while Anies' negative sentiment was 89% higher than Ganjar 8% and Prabowo 3%.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"327 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINTECS (Journal of Information Technology and Computer Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/jointecs.v8i1.4265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利益相关者广泛使用情感分析来评估对对象的情感。在本研究中,要采取的对象是在网民,特别是推特上广泛讨论的2024年总统候选人的政治人物的情绪分析。提出的问题是关于情感分类算法的性能测量,一些算法通常需要更高的准确性。本研究旨在利用Naïve贝叶斯算法改进以往研究中的性能指标,该算法的准确率水平相对较低,本研究中使用了SVM算法。这项研究利用与总统候选人相关的Twitter数据来了解每位总统候选人的民意。采集的数据是Twitter数据,关键词为Ganjar, Anies, Prabowo,总计8,959个数据,采集时间为2022年10月17日至25日。测试结果表明,与以往研究中Naïve Bayes算法相比,SVM算法的准确率仅为73.86%,而SVM算法的平均准确率为98.61%,即在Ganjar Pranowo数据集上,准确率为98.81%,召回率为99.79%。在情绪比例上,甘贾尔的正面情绪高于其他总统候选人,为55%,普拉博沃为30%,安尼斯为15%,而安尼斯的负面情绪比甘贾尔的8%和普拉博沃的3%高89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter
Stakeholders widely use sentiment analysis in assessing sentiment towards an object. In this research, the object to be taken is sentiment analysis of political figures for the 2024 presidential candidate which is being widely discussed by netizens, especially on Twitter. The issues raised are regarding the performance measurement of an algorithm in classifying sentiments, some algorithms often need a higher level of accuracy. This study aims to improve performance measures from previous studies using the Naïve Bayes algorithm which has a fairly low level of accuracy, and in this study the SVM algorithm was used. This study takes Twitter data related to presidential candidates to see public opinion for each presidential candidate. The data taken was Twitter data with the keywords Ganjar, Anies, Prabowo totaling 8,959 data taken on October 17-25 2022. The results of the test concluded that the SVM algorithm has a performance measure or quite high accuracy compared to the Naïve Bayes algorithm in previous studies only of 73.86% while the SVM algorithm gets an average accuracy value of 98.61%, namely the Ganjar Pranowo dataset, then 98.81% precision, 99.79% recall. And for the proportion of sentiment, the positive sentiment obtained by Ganjar was higher than the other presidential candidates, namely 55%, Prabowo 30% and Anies 15%, while Anies' negative sentiment was 89% higher than Ganjar 8% and Prabowo 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM Deteksi Mata di Video Smartphone Menggunakan Mediapipe Python Adopsi Pembangkit Kunci Blum Blum Shub Dan Bilangan Euler Pada Algoritma Extended Vigenere Pengukuran Usability Pada Learning Management System UMNU Kebumen Menggunakan System Usability Scale Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1