{"title":"通过参数化和可变性的比较可视化","authors":"Karl Smeltzer, Martin Erwig","doi":"10.1109/VLHCC.2018.8506578","DOIUrl":null,"url":null,"abstract":"Comparative visualizations and the comparison tasks they support constitute a crucial part of visual data analysis on complex data sets. Existing approaches are ad hoc and often require significant effort to produce comparative visualizations, which is impractical especially in cases where visualizations have to be amended in response to changes in the underlying data. We show that the combination of parameterized visualizations and variations yields an effective model for comparative visualizations. Our approach supports data exploration and automatic visualization updates when the underlying data changes. We provide a prototype implementation and demonstrate that our approach covers most of existing comparative visualizations.","PeriodicalId":444336,"journal":{"name":"2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Visualizations through Parameterization and Variability\",\"authors\":\"Karl Smeltzer, Martin Erwig\",\"doi\":\"10.1109/VLHCC.2018.8506578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative visualizations and the comparison tasks they support constitute a crucial part of visual data analysis on complex data sets. Existing approaches are ad hoc and often require significant effort to produce comparative visualizations, which is impractical especially in cases where visualizations have to be amended in response to changes in the underlying data. We show that the combination of parameterized visualizations and variations yields an effective model for comparative visualizations. Our approach supports data exploration and automatic visualization updates when the underlying data changes. We provide a prototype implementation and demonstrate that our approach covers most of existing comparative visualizations.\",\"PeriodicalId\":444336,\"journal\":{\"name\":\"2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLHCC.2018.8506578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLHCC.2018.8506578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Visualizations through Parameterization and Variability
Comparative visualizations and the comparison tasks they support constitute a crucial part of visual data analysis on complex data sets. Existing approaches are ad hoc and often require significant effort to produce comparative visualizations, which is impractical especially in cases where visualizations have to be amended in response to changes in the underlying data. We show that the combination of parameterized visualizations and variations yields an effective model for comparative visualizations. Our approach supports data exploration and automatic visualization updates when the underlying data changes. We provide a prototype implementation and demonstrate that our approach covers most of existing comparative visualizations.