基于贝叶斯fisher信息准则的ASL-MRI采样优化

J. Sanches, I. Sousa, P. Figueiredo
{"title":"基于贝叶斯fisher信息准则的ASL-MRI采样优化","authors":"J. Sanches, I. Sousa, P. Figueiredo","doi":"10.1109/ISBI.2010.5490127","DOIUrl":null,"url":null,"abstract":"Pulsed Arterial Spin Labeling (PASL) techniques potentially allow the absolute, non-invasive quantification of brain perfusion using Magnetic Resonance Imaging (MRI). This can be achieved by fitting a kinetic model to the data acquired at a number of inversion times (TI). Some model parameters such as the arterial transit time need to be estimated together with perfusion, while others are usually assumed to be known. The accuracy of the model estimation strongly depends on the distribution of the TI sampling points. Here, we propose a Bayesian framework for PASL perfusion estimation based on the Fisher information criterion, whereby the optimal sampling points can be determined taking into account the uncertainty of the model parameters as well as the amount of noise in the data. We show that the optimal sampling strategy for PASL depends on the a priori knowledge of the model parameters and this should therefore be taken into account.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bayesian fisher information criterion for sampling optimization in ASL-MRI\",\"authors\":\"J. Sanches, I. Sousa, P. Figueiredo\",\"doi\":\"10.1109/ISBI.2010.5490127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulsed Arterial Spin Labeling (PASL) techniques potentially allow the absolute, non-invasive quantification of brain perfusion using Magnetic Resonance Imaging (MRI). This can be achieved by fitting a kinetic model to the data acquired at a number of inversion times (TI). Some model parameters such as the arterial transit time need to be estimated together with perfusion, while others are usually assumed to be known. The accuracy of the model estimation strongly depends on the distribution of the TI sampling points. Here, we propose a Bayesian framework for PASL perfusion estimation based on the Fisher information criterion, whereby the optimal sampling points can be determined taking into account the uncertainty of the model parameters as well as the amount of noise in the data. We show that the optimal sampling strategy for PASL depends on the a priori knowledge of the model parameters and this should therefore be taken into account.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

脉冲动脉自旋标记(PASL)技术可能允许使用磁共振成像(MRI)对脑灌注进行绝对的、无创的量化。这可以通过将动力学模型拟合到多次反演(TI)获得的数据中来实现。有些模型参数如动脉传递时间需要与灌注一起估计,而其他模型参数通常假设是已知的。模型估计的准确性很大程度上取决于TI采样点的分布。在这里,我们提出了一个基于Fisher信息准则的PASL灌注估计贝叶斯框架,该框架可以考虑模型参数的不确定性以及数据中的噪声量来确定最佳采样点。我们表明,PASL的最佳采样策略依赖于模型参数的先验知识,因此应该考虑到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian fisher information criterion for sampling optimization in ASL-MRI
Pulsed Arterial Spin Labeling (PASL) techniques potentially allow the absolute, non-invasive quantification of brain perfusion using Magnetic Resonance Imaging (MRI). This can be achieved by fitting a kinetic model to the data acquired at a number of inversion times (TI). Some model parameters such as the arterial transit time need to be estimated together with perfusion, while others are usually assumed to be known. The accuracy of the model estimation strongly depends on the distribution of the TI sampling points. Here, we propose a Bayesian framework for PASL perfusion estimation based on the Fisher information criterion, whereby the optimal sampling points can be determined taking into account the uncertainty of the model parameters as well as the amount of noise in the data. We show that the optimal sampling strategy for PASL depends on the a priori knowledge of the model parameters and this should therefore be taken into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1