基于深度cnn的智能基础设施行人检测

Bilel Tarchoun, Imen Jegham, Anouar Ben Khalifa, Ihsen Alouani, M. Mahjoub
{"title":"基于深度cnn的智能基础设施行人检测","authors":"Bilel Tarchoun, Imen Jegham, Anouar Ben Khalifa, Ihsen Alouani, M. Mahjoub","doi":"10.1109/ATSIP49331.2020.9231712","DOIUrl":null,"url":null,"abstract":"Autonomous driving systems and driver assistance systems are becoming the center of attention in transport technology. Given its safety criticality, pedestrian detection is a highly important task. Transport oriented intelligent systems use embedded sensors for the detection task. However, vehicle side detection is starting to show its limitations especially when dealing with certain challenges such as occlusions. In this paper, we propose an infrastructure side perception system that has a bird’s eye view. We introduce a new deep pedestrian detector that can use the detection results to warn nearby vehicles of the presence of pedestrians on the road. The results show that our proposed system is able to detect pedestrians in most conditions with 70.41% precision and 69.17% recall.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Deep CNN-based Pedestrian Detection for Intelligent Infrastructure\",\"authors\":\"Bilel Tarchoun, Imen Jegham, Anouar Ben Khalifa, Ihsen Alouani, M. Mahjoub\",\"doi\":\"10.1109/ATSIP49331.2020.9231712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving systems and driver assistance systems are becoming the center of attention in transport technology. Given its safety criticality, pedestrian detection is a highly important task. Transport oriented intelligent systems use embedded sensors for the detection task. However, vehicle side detection is starting to show its limitations especially when dealing with certain challenges such as occlusions. In this paper, we propose an infrastructure side perception system that has a bird’s eye view. We introduce a new deep pedestrian detector that can use the detection results to warn nearby vehicles of the presence of pedestrians on the road. The results show that our proposed system is able to detect pedestrians in most conditions with 70.41% precision and 69.17% recall.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动驾驶系统和驾驶员辅助系统正在成为交通技术领域的研究热点。鉴于其安全的重要性,行人检测是一项非常重要的任务。面向运输的智能系统使用嵌入式传感器来完成检测任务。然而,车辆侧面检测开始显示出其局限性,特别是在处理某些挑战(如遮挡)时。在本文中,我们提出了一个具有鸟瞰图的基础设施侧感知系统。我们介绍了一种新的深度行人检测器,它可以使用检测结果来警告附近的车辆道路上有行人。结果表明,该系统在大多数情况下能够检测到行人,准确率为70.41%,召回率为69.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep CNN-based Pedestrian Detection for Intelligent Infrastructure
Autonomous driving systems and driver assistance systems are becoming the center of attention in transport technology. Given its safety criticality, pedestrian detection is a highly important task. Transport oriented intelligent systems use embedded sensors for the detection task. However, vehicle side detection is starting to show its limitations especially when dealing with certain challenges such as occlusions. In this paper, we propose an infrastructure side perception system that has a bird’s eye view. We introduce a new deep pedestrian detector that can use the detection results to warn nearby vehicles of the presence of pedestrians on the road. The results show that our proposed system is able to detect pedestrians in most conditions with 70.41% precision and 69.17% recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1