{"title":"无人机机械臂的机电一体化设计","authors":"M. Fumagalli, S. Stramigioli, R. Carloni","doi":"10.1109/IROS.2016.7759711","DOIUrl":null,"url":null,"abstract":"The paper focuses on the mechatronic design of a robotic manipulator that is meant to be mounted on an Unmanned Aerial Vehicle (UAV) and to be used in industrial applications, for both aerial inspection by contact and aerial manipulation. The combination of an UAV and the robotic manipulator realizes the aerial manipulator. The robotic manipulator is designed to be versatile so that the aerial manipulator can perform both trajectory tracking in free flight and physical interaction. Moreover, the robotic manipulator can be mounted on commercially available UAVs a modular way without interfering with the existing onboard control architecture. Experimental test are validating the overall mechatronic design.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Mechatronic design of a robotic manipulator for Unmanned Aerial Vehicles\",\"authors\":\"M. Fumagalli, S. Stramigioli, R. Carloni\",\"doi\":\"10.1109/IROS.2016.7759711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on the mechatronic design of a robotic manipulator that is meant to be mounted on an Unmanned Aerial Vehicle (UAV) and to be used in industrial applications, for both aerial inspection by contact and aerial manipulation. The combination of an UAV and the robotic manipulator realizes the aerial manipulator. The robotic manipulator is designed to be versatile so that the aerial manipulator can perform both trajectory tracking in free flight and physical interaction. Moreover, the robotic manipulator can be mounted on commercially available UAVs a modular way without interfering with the existing onboard control architecture. Experimental test are validating the overall mechatronic design.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechatronic design of a robotic manipulator for Unmanned Aerial Vehicles
The paper focuses on the mechatronic design of a robotic manipulator that is meant to be mounted on an Unmanned Aerial Vehicle (UAV) and to be used in industrial applications, for both aerial inspection by contact and aerial manipulation. The combination of an UAV and the robotic manipulator realizes the aerial manipulator. The robotic manipulator is designed to be versatile so that the aerial manipulator can perform both trajectory tracking in free flight and physical interaction. Moreover, the robotic manipulator can be mounted on commercially available UAVs a modular way without interfering with the existing onboard control architecture. Experimental test are validating the overall mechatronic design.