基于线性预测特征和神经网络分类器融合的孤立元音识别

{"title":"基于线性预测特征和神经网络分类器融合的孤立元音识别","authors":"","doi":"10.1109/ICIF.2002.1021003","DOIUrl":null,"url":null,"abstract":"In this work, various linear predictive feature vectors were used to train three different automated neural networks type classifiers for the task of isolated vowel recognition. The features used included linear prediction filter coefficients, reflection coefficients, log area ratios, and the linear predictive cepstrum. The three neural network classifiers used are the multilayer perceptron, radial basis function and the probabilistic neural network. The linear predictive cepstrum of dimension 12 is the best feature especially when training is done on clean speech and testing is done on noisy speech. Three different classifier fusion strategies (linear fusion, majority voting and weighted majority voting) were found to improve the performance. Linear fusion with varying weights is the best method and is most robust to noise.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Isolated vowel recognition using linear predictive features and neural network classifier fusion\",\"authors\":\"\",\"doi\":\"10.1109/ICIF.2002.1021003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, various linear predictive feature vectors were used to train three different automated neural networks type classifiers for the task of isolated vowel recognition. The features used included linear prediction filter coefficients, reflection coefficients, log area ratios, and the linear predictive cepstrum. The three neural network classifiers used are the multilayer perceptron, radial basis function and the probabilistic neural network. The linear predictive cepstrum of dimension 12 is the best feature especially when training is done on clean speech and testing is done on noisy speech. Three different classifier fusion strategies (linear fusion, majority voting and weighted majority voting) were found to improve the performance. Linear fusion with varying weights is the best method and is most robust to noise.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,使用各种线性预测特征向量来训练三种不同的自动神经网络类型分类器来完成孤立元音识别任务。使用的特征包括线性预测滤波器系数、反射系数、对数面积比和线性预测倒谱。使用的三种神经网络分类器是多层感知器、径向基函数和概率神经网络。12维的线性预测倒谱是最好的特征,特别是在对干净语音进行训练和对有噪声语音进行测试时。找到了三种不同的分类器融合策略(线性融合、多数投票和加权多数投票)来提高性能。变权线性融合是最好的方法,对噪声的鲁棒性最强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Isolated vowel recognition using linear predictive features and neural network classifier fusion
In this work, various linear predictive feature vectors were used to train three different automated neural networks type classifiers for the task of isolated vowel recognition. The features used included linear prediction filter coefficients, reflection coefficients, log area ratios, and the linear predictive cepstrum. The three neural network classifiers used are the multilayer perceptron, radial basis function and the probabilistic neural network. The linear predictive cepstrum of dimension 12 is the best feature especially when training is done on clean speech and testing is done on noisy speech. Three different classifier fusion strategies (linear fusion, majority voting and weighted majority voting) were found to improve the performance. Linear fusion with varying weights is the best method and is most robust to noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1