基于卷积网络的超像素分析快速云图像分割

Lifang Wu, Jiaoyu He, Meng Jian, Jianan Zhang, Yunzhen Zou
{"title":"基于卷积网络的超像素分析快速云图像分割","authors":"Lifang Wu, Jiaoyu He, Meng Jian, Jianan Zhang, Yunzhen Zou","doi":"10.1109/IWSSIP.2017.7965591","DOIUrl":null,"url":null,"abstract":"Due to the various noises, the cloud image segmentation becomes a big challenge for atmosphere prediction. CNN is capable of learning discriminative features from complex data, but this may be quite time-consuming in pixel-level segmentation problems. In this paper we propose superpixel analysis based CNN (SP-CNN) for high efficient cloud image segmentation. SP-CNN employs image over-segmentation of superpixels as basic entities to preserve local consistency. SP-CNN takes the image patches centered at representative pixels in every superpixel as input, and all superpixels are classified as cloud or non-cloud part by voting of the representative pixels. It greatly reduces the computational burden on CNN learning. In order to avoid the ambiguity from superpixel boundaries, SP-CNN selects the representative pixels uniformly from the eroded superpixels. Experimental analysis demonstrates that SP-CNN guarantees both the effectiveness and efficiency in cloud segmentation.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast cloud image segmentation with superpixel analysis based convolutional networks\",\"authors\":\"Lifang Wu, Jiaoyu He, Meng Jian, Jianan Zhang, Yunzhen Zou\",\"doi\":\"10.1109/IWSSIP.2017.7965591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the various noises, the cloud image segmentation becomes a big challenge for atmosphere prediction. CNN is capable of learning discriminative features from complex data, but this may be quite time-consuming in pixel-level segmentation problems. In this paper we propose superpixel analysis based CNN (SP-CNN) for high efficient cloud image segmentation. SP-CNN employs image over-segmentation of superpixels as basic entities to preserve local consistency. SP-CNN takes the image patches centered at representative pixels in every superpixel as input, and all superpixels are classified as cloud or non-cloud part by voting of the representative pixels. It greatly reduces the computational burden on CNN learning. In order to avoid the ambiguity from superpixel boundaries, SP-CNN selects the representative pixels uniformly from the eroded superpixels. Experimental analysis demonstrates that SP-CNN guarantees both the effectiveness and efficiency in cloud segmentation.\",\"PeriodicalId\":302860,\"journal\":{\"name\":\"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSSIP.2017.7965591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于各种噪声的存在,云图像分割成为大气预报的一大难题。CNN能够从复杂的数据中学习判别特征,但这在像素级分割问题中可能相当耗时。本文提出了一种基于超像素分析的CNN (SP-CNN)算法,用于高效的云图像分割。SP-CNN采用超像素的图像过分割作为基本实体,保持局部一致性。SP-CNN将每个超像素中以代表性像素为中心的图像patch作为输入,通过对代表性像素的投票将所有超像素分类为云部分或非云部分。大大减少了CNN学习的计算负担。为了避免超像素边界的模糊性,SP-CNN从侵蚀的超像素中均匀地选择具有代表性的像素。实验分析表明,SP-CNN保证了云分割的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast cloud image segmentation with superpixel analysis based convolutional networks
Due to the various noises, the cloud image segmentation becomes a big challenge for atmosphere prediction. CNN is capable of learning discriminative features from complex data, but this may be quite time-consuming in pixel-level segmentation problems. In this paper we propose superpixel analysis based CNN (SP-CNN) for high efficient cloud image segmentation. SP-CNN employs image over-segmentation of superpixels as basic entities to preserve local consistency. SP-CNN takes the image patches centered at representative pixels in every superpixel as input, and all superpixels are classified as cloud or non-cloud part by voting of the representative pixels. It greatly reduces the computational burden on CNN learning. In order to avoid the ambiguity from superpixel boundaries, SP-CNN selects the representative pixels uniformly from the eroded superpixels. Experimental analysis demonstrates that SP-CNN guarantees both the effectiveness and efficiency in cloud segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient frame-compatible stereoscopic video coding using HEVC screen content coding Reinforcement learning for video encoder control in HEVC Software and hardware HEVC encoding Ensemble of CNN and rich model for steganalysis IVQAD 2017: An immersive video quality assessment database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1