基于深度学习的水下测绘数据目标分类与分割

H. Okawa, S. Omoto, S. Yagi, T. Miyamoto, K. Kashiyama
{"title":"基于深度学习的水下测绘数据目标分类与分割","authors":"H. Okawa, S. Omoto, S. Yagi, T. Miyamoto, K. Kashiyama","doi":"10.23967/wccm-apcom.2022.087","DOIUrl":null,"url":null,"abstract":". This paper presents a fast and accurate classification method for underwater objects using underwater mapping data obtained by a small Autonomous Underwater Vehicle (AUV) and autonomous surface vehicle (ASV). For the mapping data, in addition to underwater acoustic reflection intensity images, water depth data, point cloud data and backscattering reflection intensity data are employed. We propose the automatic classification and semantic segmentation method on deep learning using a convolutional neural network (CNN) and PointNet++. In order to verify the effectiveness of the present method, we applied it to the measured several underwater mapping data.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object Classification and Segmentation Based on Deep Learning Using Underwater Mapping Data\",\"authors\":\"H. Okawa, S. Omoto, S. Yagi, T. Miyamoto, K. Kashiyama\",\"doi\":\"10.23967/wccm-apcom.2022.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper presents a fast and accurate classification method for underwater objects using underwater mapping data obtained by a small Autonomous Underwater Vehicle (AUV) and autonomous surface vehicle (ASV). For the mapping data, in addition to underwater acoustic reflection intensity images, water depth data, point cloud data and backscattering reflection intensity data are employed. We propose the automatic classification and semantic segmentation method on deep learning using a convolutional neural network (CNN) and PointNet++. In order to verify the effectiveness of the present method, we applied it to the measured several underwater mapping data.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 提出了一种利用小型自主水下航行器(AUV)和自主水面航行器(ASV)获取的水下测绘数据对水下目标进行快速准确分类的方法。在制图数据中,除了水声反射强度图像外,还使用了水深数据、点云数据和后向散射反射强度数据。提出了一种基于卷积神经网络(CNN)和PointNet++的深度学习自动分类和语义分割方法。为了验证该方法的有效性,我们将其应用于实测的若干水下测绘数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Classification and Segmentation Based on Deep Learning Using Underwater Mapping Data
. This paper presents a fast and accurate classification method for underwater objects using underwater mapping data obtained by a small Autonomous Underwater Vehicle (AUV) and autonomous surface vehicle (ASV). For the mapping data, in addition to underwater acoustic reflection intensity images, water depth data, point cloud data and backscattering reflection intensity data are employed. We propose the automatic classification and semantic segmentation method on deep learning using a convolutional neural network (CNN) and PointNet++. In order to verify the effectiveness of the present method, we applied it to the measured several underwater mapping data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry New calculation scheme for compressible Euler equation Numerical study on the hydrate-rich sediment behaviour during depressurization Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain Out of Plane Lower Bound Limit Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1