一种改进的大核多尺度卷积神经网络用于轴承故障诊断

Fang Li, Liping Wang, Decheng Wang, Jun Wu, Hongjun Zhao, Ying Wang
{"title":"一种改进的大核多尺度卷积神经网络用于轴承故障诊断","authors":"Fang Li, Liping Wang, Decheng Wang, Jun Wu, Hongjun Zhao, Ying Wang","doi":"10.1109/ICCECE58074.2023.10135441","DOIUrl":null,"url":null,"abstract":"We propose an improved end-to-end Multiscale Convolutional Neural Network with Large Kernel (LKMCNN) for bearing fault diagnosis in this paper. The LKMCNN is an end-to-end network, which can automatically extract features from the original vibration signal and accurately diagnose bearing fault without any manual feature selection operations. The LKMCNN can extract features at a wide-scale by using a large convolution kernel, which can effectively prevent information loss and improve the robustness of the model. Benefit from the adaptively features extraction of short-term, medium-term, and long-term periods by three parallel convolution operation with different kernel size, the adaptability and robustness of the model are improved. Compared with three excellent baseline models, the LKMCNN achieves state-of-the-art performance in bearing fault diagnosis by experiments using Paderborn bearing fault dataset.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Multiscale Convolutional Neural Network with Large Kernel for Bearing Fault Diagnosis\",\"authors\":\"Fang Li, Liping Wang, Decheng Wang, Jun Wu, Hongjun Zhao, Ying Wang\",\"doi\":\"10.1109/ICCECE58074.2023.10135441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an improved end-to-end Multiscale Convolutional Neural Network with Large Kernel (LKMCNN) for bearing fault diagnosis in this paper. The LKMCNN is an end-to-end network, which can automatically extract features from the original vibration signal and accurately diagnose bearing fault without any manual feature selection operations. The LKMCNN can extract features at a wide-scale by using a large convolution kernel, which can effectively prevent information loss and improve the robustness of the model. Benefit from the adaptively features extraction of short-term, medium-term, and long-term periods by three parallel convolution operation with different kernel size, the adaptability and robustness of the model are improved. Compared with three excellent baseline models, the LKMCNN achieves state-of-the-art performance in bearing fault diagnosis by experiments using Paderborn bearing fault dataset.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的端到端大核多尺度卷积神经网络(LKMCNN)用于轴承故障诊断。LKMCNN是一种端到端网络,可以自动从原始振动信号中提取特征,无需任何手动特征选择操作即可准确诊断轴承故障。LKMCNN通过使用大卷积核在大范围内提取特征,可以有效地防止信息丢失,提高模型的鲁棒性。利用三种不同核大小的并行卷积运算自适应提取短期、中期和长期特征,提高了模型的适应性和鲁棒性。通过对帕德伯恩轴承故障数据集的实验,与三种优秀的基线模型进行比较,LKMCNN在轴承故障诊断方面取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Multiscale Convolutional Neural Network with Large Kernel for Bearing Fault Diagnosis
We propose an improved end-to-end Multiscale Convolutional Neural Network with Large Kernel (LKMCNN) for bearing fault diagnosis in this paper. The LKMCNN is an end-to-end network, which can automatically extract features from the original vibration signal and accurately diagnose bearing fault without any manual feature selection operations. The LKMCNN can extract features at a wide-scale by using a large convolution kernel, which can effectively prevent information loss and improve the robustness of the model. Benefit from the adaptively features extraction of short-term, medium-term, and long-term periods by three parallel convolution operation with different kernel size, the adaptability and robustness of the model are improved. Compared with three excellent baseline models, the LKMCNN achieves state-of-the-art performance in bearing fault diagnosis by experiments using Paderborn bearing fault dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter Edge and Target Detection Method Based on Central Moment Feature Adaptive short-time Fourier transform based on reinforcement learning Design and implementation of carrier aggregation and secure communication in distribution field network Power data attribution revocation searchable encrypted cloud storage Research of Intrusion Detection Based on Neural Network Optimized by Sparrow Search Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1