Fang Li, Liping Wang, Decheng Wang, Jun Wu, Hongjun Zhao, Ying Wang
{"title":"一种改进的大核多尺度卷积神经网络用于轴承故障诊断","authors":"Fang Li, Liping Wang, Decheng Wang, Jun Wu, Hongjun Zhao, Ying Wang","doi":"10.1109/ICCECE58074.2023.10135441","DOIUrl":null,"url":null,"abstract":"We propose an improved end-to-end Multiscale Convolutional Neural Network with Large Kernel (LKMCNN) for bearing fault diagnosis in this paper. The LKMCNN is an end-to-end network, which can automatically extract features from the original vibration signal and accurately diagnose bearing fault without any manual feature selection operations. The LKMCNN can extract features at a wide-scale by using a large convolution kernel, which can effectively prevent information loss and improve the robustness of the model. Benefit from the adaptively features extraction of short-term, medium-term, and long-term periods by three parallel convolution operation with different kernel size, the adaptability and robustness of the model are improved. Compared with three excellent baseline models, the LKMCNN achieves state-of-the-art performance in bearing fault diagnosis by experiments using Paderborn bearing fault dataset.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Multiscale Convolutional Neural Network with Large Kernel for Bearing Fault Diagnosis\",\"authors\":\"Fang Li, Liping Wang, Decheng Wang, Jun Wu, Hongjun Zhao, Ying Wang\",\"doi\":\"10.1109/ICCECE58074.2023.10135441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an improved end-to-end Multiscale Convolutional Neural Network with Large Kernel (LKMCNN) for bearing fault diagnosis in this paper. The LKMCNN is an end-to-end network, which can automatically extract features from the original vibration signal and accurately diagnose bearing fault without any manual feature selection operations. The LKMCNN can extract features at a wide-scale by using a large convolution kernel, which can effectively prevent information loss and improve the robustness of the model. Benefit from the adaptively features extraction of short-term, medium-term, and long-term periods by three parallel convolution operation with different kernel size, the adaptability and robustness of the model are improved. Compared with three excellent baseline models, the LKMCNN achieves state-of-the-art performance in bearing fault diagnosis by experiments using Paderborn bearing fault dataset.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Multiscale Convolutional Neural Network with Large Kernel for Bearing Fault Diagnosis
We propose an improved end-to-end Multiscale Convolutional Neural Network with Large Kernel (LKMCNN) for bearing fault diagnosis in this paper. The LKMCNN is an end-to-end network, which can automatically extract features from the original vibration signal and accurately diagnose bearing fault without any manual feature selection operations. The LKMCNN can extract features at a wide-scale by using a large convolution kernel, which can effectively prevent information loss and improve the robustness of the model. Benefit from the adaptively features extraction of short-term, medium-term, and long-term periods by three parallel convolution operation with different kernel size, the adaptability and robustness of the model are improved. Compared with three excellent baseline models, the LKMCNN achieves state-of-the-art performance in bearing fault diagnosis by experiments using Paderborn bearing fault dataset.