用遗传算法探索类a *寻路算法

Ryan E. Leigh, S. Louis, C. Miles
{"title":"用遗传算法探索类a *寻路算法","authors":"Ryan E. Leigh, S. Louis, C. Miles","doi":"10.1109/CIG.2007.368081","DOIUrl":null,"url":null,"abstract":"We use a genetic algorithm to explore the space of pathfinding algorithms in Lagoon, a 3D naval real-time strategy game and training simulation. To aid in training, Lagoon tries to provide a rich environment with many agents (boats) that maneuver realistically. A*, the traditional pathfinding algorithm in games is computationally expensive when run for many agents and A* paths quickly lose validity as agents move. Although there is a large literature targeted at making A* implementations faster, we want believability and optimal paths may not be believable. In this paper we use a genetic algorithm to search the space of network search algorithms like A* to find new pathfinding algorithms that are near-optimal, fast, and believable. Our results indicate that the genetic algorithm can explore this space well and that novel pathfinding algorithms (found by our genetic algorithm) quickly find near-optimal, more-believable paths in Lagoon","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Using a Genetic Algorithm to Explore A*-like Pathfinding Algorithms\",\"authors\":\"Ryan E. Leigh, S. Louis, C. Miles\",\"doi\":\"10.1109/CIG.2007.368081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a genetic algorithm to explore the space of pathfinding algorithms in Lagoon, a 3D naval real-time strategy game and training simulation. To aid in training, Lagoon tries to provide a rich environment with many agents (boats) that maneuver realistically. A*, the traditional pathfinding algorithm in games is computationally expensive when run for many agents and A* paths quickly lose validity as agents move. Although there is a large literature targeted at making A* implementations faster, we want believability and optimal paths may not be believable. In this paper we use a genetic algorithm to search the space of network search algorithms like A* to find new pathfinding algorithms that are near-optimal, fast, and believable. Our results indicate that the genetic algorithm can explore this space well and that novel pathfinding algorithms (found by our genetic algorithm) quickly find near-optimal, more-believable paths in Lagoon\",\"PeriodicalId\":365269,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2007.368081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

我们使用遗传算法来探索寻路算法的空间,泻湖,一个三维海军实时战略游戏和训练模拟。为了帮助训练,Lagoon试图提供一个丰富的环境,其中有许多真实机动的代理(船)。A*,游戏中的传统寻径算法在运行许多代理时计算成本很高,并且随着代理的移动,A*路径很快失去有效性。尽管有大量的文献以使a *实现更快为目标,但我们想要的是可信度,而最优路径可能不可信。在本文中,我们使用遗传算法来搜索网络搜索算法(如a *)的空间,以寻找接近最优、快速和可信的新寻路算法。我们的研究结果表明,遗传算法可以很好地探索这个空间,并且新的寻径算法(由我们的遗传算法发现)可以快速找到泻湖中接近最优的,更可信的路径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a Genetic Algorithm to Explore A*-like Pathfinding Algorithms
We use a genetic algorithm to explore the space of pathfinding algorithms in Lagoon, a 3D naval real-time strategy game and training simulation. To aid in training, Lagoon tries to provide a rich environment with many agents (boats) that maneuver realistically. A*, the traditional pathfinding algorithm in games is computationally expensive when run for many agents and A* paths quickly lose validity as agents move. Although there is a large literature targeted at making A* implementations faster, we want believability and optimal paths may not be believable. In this paper we use a genetic algorithm to search the space of network search algorithms like A* to find new pathfinding algorithms that are near-optimal, fast, and believable. Our results indicate that the genetic algorithm can explore this space well and that novel pathfinding algorithms (found by our genetic algorithm) quickly find near-optimal, more-believable paths in Lagoon
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Evolutionary Learning Approaches for The Virus Game Vidya: A God Game Based on Intelligent Agents Whose Actions are Devised Through Evolutionary Computation Evolving Pac-Man Players: Can We Learn from Raw Input? Tournament Particle Swarm Optimization EvoTanks: Co-Evolutionary Development of Game-Playing Agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1