{"title":"一个改进的调试基础设施,以协助实时故障注入活动","authors":"A. Fidalgo, G. Alves, J. Ferreira","doi":"10.1109/DDECS.2006.1649607","DOIUrl":null,"url":null,"abstract":"Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures","PeriodicalId":158707,"journal":{"name":"2006 IEEE Design and Diagnostics of Electronic Circuits and systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Modified Debugging Infrastructure to Assist Real Time Fault Injection Campaigns\",\"authors\":\"A. Fidalgo, G. Alves, J. Ferreira\",\"doi\":\"10.1109/DDECS.2006.1649607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures\",\"PeriodicalId\":158707,\"journal\":{\"name\":\"2006 IEEE Design and Diagnostics of Electronic Circuits and systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Design and Diagnostics of Electronic Circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2006.1649607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Design and Diagnostics of Electronic Circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2006.1649607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Debugging Infrastructure to Assist Real Time Fault Injection Campaigns
Fault injection is frequently used for the verification and validation of the fault tolerant features of microprocessors. This paper proposes the modification of a common on-chip debugging (OCD) infrastructure to add fault injection capabilities and improve performance. The proposed solution imposes a very low logic overhead and provides a flexible and efficient mechanism for the execution of fault injection campaigns, being applicable to different target system architectures