基于反向预测加权邻居数据关联的多目标跟踪

Zhongzhi Li, Xue-gang Wang
{"title":"基于反向预测加权邻居数据关联的多目标跟踪","authors":"Zhongzhi Li, Xue-gang Wang","doi":"10.4156/JCIT.VOL5.ISSUE8.21","DOIUrl":null,"url":null,"abstract":"Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets and measurements are reflected in the reverse prediction residual norm.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple Target Tracking Using Reverse Prediction Weighted Neighbor Data Association\",\"authors\":\"Zhongzhi Li, Xue-gang Wang\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets and measurements are reflected in the reverse prediction residual norm.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要提出了一种新的多目标跟踪数据关联方法。该方法采用反向预测加权邻域法计算候选测量值离目标的概率。该方法的目的是消除对检测概率和杂波密度等先验知识的获取需求。目标与测量值之间的概率反映在反向预测残差模中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Target Tracking Using Reverse Prediction Weighted Neighbor Data Association
Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets and measurements are reflected in the reverse prediction residual norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1