用于用户理解的多模态交互式机器学习

Xuan Guo
{"title":"用于用户理解的多模态交互式机器学习","authors":"Xuan Guo","doi":"10.1145/2732158.2732166","DOIUrl":null,"url":null,"abstract":"Designing intelligent computer interfaces requires human intelligence, which can be captured through multimodal sensors during human-computer interactions. These data modalities may involve users' language, vision, and body signals, which shed light on different aspects of human cognition and behaviors. I propose to integrate multimodal data to more effectively understand users during interactions. Since users' manipulation of big data (e.g., texts, images, videos) through interfaces can be computationally intensive, an interactive machine learning framework will be constructed in an unsupervised manner.","PeriodicalId":177570,"journal":{"name":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimodal Interactive Machine Learning for User Understanding\",\"authors\":\"Xuan Guo\",\"doi\":\"10.1145/2732158.2732166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing intelligent computer interfaces requires human intelligence, which can be captured through multimodal sensors during human-computer interactions. These data modalities may involve users' language, vision, and body signals, which shed light on different aspects of human cognition and behaviors. I propose to integrate multimodal data to more effectively understand users during interactions. Since users' manipulation of big data (e.g., texts, images, videos) through interfaces can be computationally intensive, an interactive machine learning framework will be constructed in an unsupervised manner.\",\"PeriodicalId\":177570,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2732158.2732166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2732158.2732166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设计智能计算机界面需要人的智能,在人机交互过程中,可以通过多模态传感器捕获人的智能。这些数据模态可能涉及用户的语言、视觉和身体信号,它们揭示了人类认知和行为的不同方面。我建议整合多模态数据,以便在交互过程中更有效地了解用户。由于用户通过界面对大数据(如文本、图像、视频)的操作可能是计算密集型的,因此将以无监督的方式构建交互式机器学习框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Interactive Machine Learning for User Understanding
Designing intelligent computer interfaces requires human intelligence, which can be captured through multimodal sensors during human-computer interactions. These data modalities may involve users' language, vision, and body signals, which shed light on different aspects of human cognition and behaviors. I propose to integrate multimodal data to more effectively understand users during interactions. Since users' manipulation of big data (e.g., texts, images, videos) through interfaces can be computationally intensive, an interactive machine learning framework will be constructed in an unsupervised manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Crowd-based Picture Schematization System Interactive Control and Visualization of Difficulty Inferences from User-Interface Commands A Revisit to The Identification of Contexts in Recommender Systems Multimodal Interactive Machine Learning for User Understanding Mechanix: A Sketch-Based Educational Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1