CIP-ES:解释替代物的因果输入扰动

Sebastian Steindl, Martin Surner
{"title":"CIP-ES:解释替代物的因果输入扰动","authors":"Sebastian Steindl, Martin Surner","doi":"10.1145/3590003.3590107","DOIUrl":null,"url":null,"abstract":"With current advances in Machine Learning and its growing use in high-impact scenarios, the demand for interpretable and explainable models becomes crucial. Causality research tries to go beyond statistical correlations by focusing on causal relationships, which is fundamental for Interpretable and Explainable Artificial Intelligence. In this paper, we perturb the input for explanation surrogates based on causal graphs. We present an approach to combine surrogate-based explanations with causal knowledge. We apply the perturbed data to the Local Interpretable Model-agnostic Explanations (LIME) approach to showcase how causal graphs improve explanations of surrogate models. We thus integrate features from both domains by adding a causal component to local explanations. The proposed approach enables explanations that suit the expectations of the user by having the user define an appropriate causal graph. Accordingly, these expectations are true to the user. We demonstrate the suitability of our method using real world data.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CIP-ES: Causal Input Perturbation for Explanation Surrogates\",\"authors\":\"Sebastian Steindl, Martin Surner\",\"doi\":\"10.1145/3590003.3590107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With current advances in Machine Learning and its growing use in high-impact scenarios, the demand for interpretable and explainable models becomes crucial. Causality research tries to go beyond statistical correlations by focusing on causal relationships, which is fundamental for Interpretable and Explainable Artificial Intelligence. In this paper, we perturb the input for explanation surrogates based on causal graphs. We present an approach to combine surrogate-based explanations with causal knowledge. We apply the perturbed data to the Local Interpretable Model-agnostic Explanations (LIME) approach to showcase how causal graphs improve explanations of surrogate models. We thus integrate features from both domains by adding a causal component to local explanations. The proposed approach enables explanations that suit the expectations of the user by having the user define an appropriate causal graph. Accordingly, these expectations are true to the user. We demonstrate the suitability of our method using real world data.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着当前机器学习的进步及其在高影响场景中的应用越来越多,对可解释和可解释模型的需求变得至关重要。因果关系研究试图超越统计相关性,关注因果关系,这是可解释和可解释人工智能的基础。在本文中,我们对基于因果图的解释代理的输入进行了扰动。我们提出了一种将基于代理的解释与因果知识相结合的方法。我们将扰动数据应用于局部可解释模型不可知论解释(LIME)方法,以展示因果图如何改进代理模型的解释。因此,我们通过在局部解释中添加因果成分来整合两个领域的特征。建议的方法通过让用户定义适当的因果图来实现符合用户期望的解释。因此,这些期望对用户来说是真实的。我们用真实世界的数据证明了我们的方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CIP-ES: Causal Input Perturbation for Explanation Surrogates
With current advances in Machine Learning and its growing use in high-impact scenarios, the demand for interpretable and explainable models becomes crucial. Causality research tries to go beyond statistical correlations by focusing on causal relationships, which is fundamental for Interpretable and Explainable Artificial Intelligence. In this paper, we perturb the input for explanation surrogates based on causal graphs. We present an approach to combine surrogate-based explanations with causal knowledge. We apply the perturbed data to the Local Interpretable Model-agnostic Explanations (LIME) approach to showcase how causal graphs improve explanations of surrogate models. We thus integrate features from both domains by adding a causal component to local explanations. The proposed approach enables explanations that suit the expectations of the user by having the user define an appropriate causal graph. Accordingly, these expectations are true to the user. We demonstrate the suitability of our method using real world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Interpretable Brain Network Atlas-Based Hybrid Model for Mild Cognitive Impairment Progression Prediction Heart Sound Classification Algorithm Based on Sub-band Statistics and Time-frequency Fusion Features An Unmanned Lane Detection Algorithm Using Deep Learning and Ordered Test Sets Strategy Federated Learning-Based Intrusion Detection Method for Smart Grid A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1