机器人的自动化系统与实验再现

Florian Lier, Marc Hanheide, L. Natale, Simon Schulz, Jonathan Weisz, S. Wachsmuth, S. Wrede
{"title":"机器人的自动化系统与实验再现","authors":"Florian Lier, Marc Hanheide, L. Natale, Simon Schulz, Jonathan Weisz, S. Wachsmuth, S. Wrede","doi":"10.1109/IROS.2016.7759508","DOIUrl":null,"url":null,"abstract":"Even though research on autonomous robots and human-robot interaction accomplished great progress in recent years, and reusable soft- and hardware components are available, many of the reported findings are only hardly reproducible by fellow scientists. Usually, reproducibility is impeded because required information, such as the specification of software versions and their configuration, required data sets, and experiment protocols are not mentioned or referenced in most publications. In order to address these issues, we recently introduced an integrated tool chain and its underlying development process to facilitate reproducibility in robotics. In this contribution we instantiate the complete tool chain in a unique user study in order to assess its applicability and usability. To this end, we chose three different robotic systems from independent institutions and modeled them in our tool chain, including three exemplary experiments. Subsequently, we asked twelve researchers to reproduce one of the formerly unknown systems and the associated experiment. We show that all twelve scientists were able to replicate a formerly unknown robotics experiment using our tool chain.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Towards automated system and experiment reproduction in robotics\",\"authors\":\"Florian Lier, Marc Hanheide, L. Natale, Simon Schulz, Jonathan Weisz, S. Wachsmuth, S. Wrede\",\"doi\":\"10.1109/IROS.2016.7759508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though research on autonomous robots and human-robot interaction accomplished great progress in recent years, and reusable soft- and hardware components are available, many of the reported findings are only hardly reproducible by fellow scientists. Usually, reproducibility is impeded because required information, such as the specification of software versions and their configuration, required data sets, and experiment protocols are not mentioned or referenced in most publications. In order to address these issues, we recently introduced an integrated tool chain and its underlying development process to facilitate reproducibility in robotics. In this contribution we instantiate the complete tool chain in a unique user study in order to assess its applicability and usability. To this end, we chose three different robotic systems from independent institutions and modeled them in our tool chain, including three exemplary experiments. Subsequently, we asked twelve researchers to reproduce one of the formerly unknown systems and the associated experiment. We show that all twelve scientists were able to replicate a formerly unknown robotics experiment using our tool chain.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

尽管自主机器人和人机交互的研究近年来取得了很大的进展,并且可重复使用的软、硬件组件是可用的,但许多报告的发现很难被其他科学家复制。通常,由于所需的信息,如软件版本及其配置的规格,所需的数据集和实验协议在大多数出版物中没有提及或引用,因此可重复性受到阻碍。为了解决这些问题,我们最近引入了一个集成的工具链及其底层开发过程,以促进机器人技术的可重复性。在这篇文章中,我们在一个独特的用户研究中实例化了完整的工具链,以评估其适用性和可用性。为此,我们从独立机构选择了三种不同的机器人系统,并在我们的工具链中对它们进行建模,包括三个示例性实验。随后,我们请了12位研究人员重现了其中一个以前未知的系统和相关的实验。我们展示了所有12位科学家都能够使用我们的工具链复制一个以前未知的机器人实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards automated system and experiment reproduction in robotics
Even though research on autonomous robots and human-robot interaction accomplished great progress in recent years, and reusable soft- and hardware components are available, many of the reported findings are only hardly reproducible by fellow scientists. Usually, reproducibility is impeded because required information, such as the specification of software versions and their configuration, required data sets, and experiment protocols are not mentioned or referenced in most publications. In order to address these issues, we recently introduced an integrated tool chain and its underlying development process to facilitate reproducibility in robotics. In this contribution we instantiate the complete tool chain in a unique user study in order to assess its applicability and usability. To this end, we chose three different robotic systems from independent institutions and modeled them in our tool chain, including three exemplary experiments. Subsequently, we asked twelve researchers to reproduce one of the formerly unknown systems and the associated experiment. We show that all twelve scientists were able to replicate a formerly unknown robotics experiment using our tool chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1