低复杂度角内预测卷积神经网络无损HEVC

H. Huang, I. Schiopu, A. Munteanu
{"title":"低复杂度角内预测卷积神经网络无损HEVC","authors":"H. Huang, I. Schiopu, A. Munteanu","doi":"10.1109/MMSP48831.2020.9287067","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel low-complexity Convolutional Neural Network (CNN) architecture for block-wise angular intra-prediction in lossless video coding. The proposed CNN architecture is designed based on an efficient patch processing layer structure. The proposed CNN-based prediction method is employed to process an input patch containing the causal neighborhood of the current block in order to directly generate the predicted block. The trained models are integrated in the HEVC video coding standard to perform CNN-based angular intra-prediction and to compete with the conventional HEVC prediction. The proposed CNN architecture contains a reduced number of parameters equivalent to only 37% of that of the state-of-the-art reference CNN architecture. Experimental results show that the inference runtime is also reduced by around 5.5% compared to that of the reference method. At the same time, the proposed coding systems yield 83% to 91% of the compression performance of the reference method. The results demonstrate the potential of structural and complexity optimizations in CNN-based intra-prediction for lossless HEVC.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-Complexity Angular Intra-Prediction Convolutional Neural Network for Lossless HEVC\",\"authors\":\"H. Huang, I. Schiopu, A. Munteanu\",\"doi\":\"10.1109/MMSP48831.2020.9287067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a novel low-complexity Convolutional Neural Network (CNN) architecture for block-wise angular intra-prediction in lossless video coding. The proposed CNN architecture is designed based on an efficient patch processing layer structure. The proposed CNN-based prediction method is employed to process an input patch containing the causal neighborhood of the current block in order to directly generate the predicted block. The trained models are integrated in the HEVC video coding standard to perform CNN-based angular intra-prediction and to compete with the conventional HEVC prediction. The proposed CNN architecture contains a reduced number of parameters equivalent to only 37% of that of the state-of-the-art reference CNN architecture. Experimental results show that the inference runtime is also reduced by around 5.5% compared to that of the reference method. At the same time, the proposed coding systems yield 83% to 91% of the compression performance of the reference method. The results demonstrate the potential of structural and complexity optimizations in CNN-based intra-prediction for lossless HEVC.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新颖的低复杂度卷积神经网络(CNN)结构,用于无损视频编码中逐块角度内预测。本文提出的CNN架构是基于高效的patch处理层结构设计的。提出的基于cnn的预测方法是对包含当前块的因果邻域的输入patch进行处理,从而直接生成预测块。将训练好的模型集成到HEVC视频编码标准中,进行基于cnn的角度内预测,并与传统的HEVC预测相抗衡。所提出的CNN架构包含的参数数量减少了,相当于目前最先进的参考CNN架构的37%。实验结果表明,与参考方法相比,推理运行时间也缩短了5.5%左右。同时,所提出的编码系统的压缩性能是参考方法的83%到91%。结果表明,在基于cnn的无损HEVC内部预测中,结构和复杂性优化具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Complexity Angular Intra-Prediction Convolutional Neural Network for Lossless HEVC
The paper proposes a novel low-complexity Convolutional Neural Network (CNN) architecture for block-wise angular intra-prediction in lossless video coding. The proposed CNN architecture is designed based on an efficient patch processing layer structure. The proposed CNN-based prediction method is employed to process an input patch containing the causal neighborhood of the current block in order to directly generate the predicted block. The trained models are integrated in the HEVC video coding standard to perform CNN-based angular intra-prediction and to compete with the conventional HEVC prediction. The proposed CNN architecture contains a reduced number of parameters equivalent to only 37% of that of the state-of-the-art reference CNN architecture. Experimental results show that the inference runtime is also reduced by around 5.5% compared to that of the reference method. At the same time, the proposed coding systems yield 83% to 91% of the compression performance of the reference method. The results demonstrate the potential of structural and complexity optimizations in CNN-based intra-prediction for lossless HEVC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1