在Kubernetes上设计改进的ML任务调度机制

Hung-Ming Chen, Shih-Ying Chen, Sheng-Hsien Hsueh, Sheng-Kai Wang
{"title":"在Kubernetes上设计改进的ML任务调度机制","authors":"Hung-Ming Chen, Shih-Ying Chen, Sheng-Hsien Hsueh, Sheng-Kai Wang","doi":"10.1109/IS3C57901.2023.00024","DOIUrl":null,"url":null,"abstract":"As the fields related to machine learning (ML)/deep learning (DL) continue to mature, the MLOps machine learning automation process is also gradually emerging. Then, many open-source MLOps frameworks based on Kubernetes have begun to be proposed. Currently, most Kubernetes-based MLOps frameworks aim to establish a common and easy-to-use ML pipeline environment for users to use based on ML containerized tasks. However, Kubernetes’ default container scheduler only considers the resource conditions of individual containerized tasks, rather than considering the scheduling of the entire containerized ML task composition. Such a situation may lead to the system resources not being utilized properly. Therefore, this study designs an improved ML task mechanism based on the Kubernetes-based platform to replace the Kubernetes default scheduler. The scheduling strategy in Kubernetes can be modified to better suit the needs of the machine learning development environment.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an Improved ML Task Scheduling Mechanism on Kubernetes\",\"authors\":\"Hung-Ming Chen, Shih-Ying Chen, Sheng-Hsien Hsueh, Sheng-Kai Wang\",\"doi\":\"10.1109/IS3C57901.2023.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the fields related to machine learning (ML)/deep learning (DL) continue to mature, the MLOps machine learning automation process is also gradually emerging. Then, many open-source MLOps frameworks based on Kubernetes have begun to be proposed. Currently, most Kubernetes-based MLOps frameworks aim to establish a common and easy-to-use ML pipeline environment for users to use based on ML containerized tasks. However, Kubernetes’ default container scheduler only considers the resource conditions of individual containerized tasks, rather than considering the scheduling of the entire containerized ML task composition. Such a situation may lead to the system resources not being utilized properly. Therefore, this study designs an improved ML task mechanism based on the Kubernetes-based platform to replace the Kubernetes default scheduler. The scheduling strategy in Kubernetes can be modified to better suit the needs of the machine learning development environment.\",\"PeriodicalId\":142483,\"journal\":{\"name\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS3C57901.2023.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器学习(ML)/深度学习(DL)相关领域的不断成熟,MLOps机器学习自动化过程也逐渐兴起。然后,许多基于Kubernetes的开源MLOps框架开始被提出。目前,大多数基于kubernetes的MLOps框架的目标是建立一个通用且易于使用的ML管道环境,供用户基于ML容器化任务使用。然而,Kubernetes的默认容器调度器只考虑单个容器化任务的资源条件,而不考虑整个容器化ML任务组合的调度。这种情况可能导致系统资源没有得到合理利用。因此,本研究基于Kubernetes平台设计了一种改进的ML任务机制,以取代Kubernetes的默认调度器。Kubernetes中的调度策略可以修改,以更好地适应机器学习开发环境的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing an Improved ML Task Scheduling Mechanism on Kubernetes
As the fields related to machine learning (ML)/deep learning (DL) continue to mature, the MLOps machine learning automation process is also gradually emerging. Then, many open-source MLOps frameworks based on Kubernetes have begun to be proposed. Currently, most Kubernetes-based MLOps frameworks aim to establish a common and easy-to-use ML pipeline environment for users to use based on ML containerized tasks. However, Kubernetes’ default container scheduler only considers the resource conditions of individual containerized tasks, rather than considering the scheduling of the entire containerized ML task composition. Such a situation may lead to the system resources not being utilized properly. Therefore, this study designs an improved ML task mechanism based on the Kubernetes-based platform to replace the Kubernetes default scheduler. The scheduling strategy in Kubernetes can be modified to better suit the needs of the machine learning development environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1