一种新的多模块神经网络系统用于不平衡心跳分类

Jiang Jing, Zhang Huaifeng, Pi Dechang, Dai Chenglong
{"title":"一种新的多模块神经网络系统用于不平衡心跳分类","authors":"Jiang Jing,&nbsp;Zhang Huaifeng,&nbsp;Pi Dechang,&nbsp;Dai Chenglong","doi":"10.1016/j.eswax.2019.100003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel multi-module neural network system named MMNNS is proposed to solve the imbalance problem in electrocardiogram (ECG) heartbeats classification. Four submodules are designed to construct the system: preprocessing, imbalance problem processing, feature extraction and classification. Imbalance problem processing module mainly introduces three methods: BLSM, CTFM and 2PT, which are proposed from three aspects of resampling, data feature and algorithm respectively. BLSM is used to synthesize virtual samples linearly around the minority samples. CTFM consists of DAE-based feature extraction part and QRS-based feature selection part, in which selected features and complete features are applied to determine the heartbeat class simultaneously. The processed data are fed into a convolutional neural network (CNN) by applying 2PT to train and fine-tune. MMNNS is trained on MIT-BIH Arrhythmia Database following AAMI standard, using intra-patient and inter-patient scheme, especially the latter which is strongly recommended. The comparisons with several state-of-the-art methods using standard criteria on three datasets demonstrate the superiority of MMNNS for improving detection of heartbeats and addressing imbalance in ECG heartbeats classification.</p></div>","PeriodicalId":36838,"journal":{"name":"Expert Systems with Applications: X","volume":"1 ","pages":"Article 100003"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eswax.2019.100003","citationCount":"49","resultStr":"{\"title\":\"A novel multi-module neural network system for imbalanced heartbeats classification\",\"authors\":\"Jiang Jing,&nbsp;Zhang Huaifeng,&nbsp;Pi Dechang,&nbsp;Dai Chenglong\",\"doi\":\"10.1016/j.eswax.2019.100003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a novel multi-module neural network system named MMNNS is proposed to solve the imbalance problem in electrocardiogram (ECG) heartbeats classification. Four submodules are designed to construct the system: preprocessing, imbalance problem processing, feature extraction and classification. Imbalance problem processing module mainly introduces three methods: BLSM, CTFM and 2PT, which are proposed from three aspects of resampling, data feature and algorithm respectively. BLSM is used to synthesize virtual samples linearly around the minority samples. CTFM consists of DAE-based feature extraction part and QRS-based feature selection part, in which selected features and complete features are applied to determine the heartbeat class simultaneously. The processed data are fed into a convolutional neural network (CNN) by applying 2PT to train and fine-tune. MMNNS is trained on MIT-BIH Arrhythmia Database following AAMI standard, using intra-patient and inter-patient scheme, especially the latter which is strongly recommended. The comparisons with several state-of-the-art methods using standard criteria on three datasets demonstrate the superiority of MMNNS for improving detection of heartbeats and addressing imbalance in ECG heartbeats classification.</p></div>\",\"PeriodicalId\":36838,\"journal\":{\"name\":\"Expert Systems with Applications: X\",\"volume\":\"1 \",\"pages\":\"Article 100003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.eswax.2019.100003\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590188519300034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590188519300034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 49

摘要

本文提出了一种新型的多模块神经网络系统MMNNS,用于解决心电图(ECG)心跳分类中的不平衡问题。设计了预处理、不平衡问题处理、特征提取和分类四个子模块来构建系统。不平衡问题处理模块主要介绍了三种方法:BLSM、CTFM和2PT,分别从重采样、数据特征和算法三个方面提出。BLSM用于围绕少数样本线性合成虚拟样本。CTFM包括基于daa的特征提取部分和基于qrs的特征选择部分,其中选择的特征和完整的特征同时用于确定心跳类别。处理后的数据通过2PT进行训练和微调,输入卷积神经网络(CNN)。MMNNS按照AAMI标准在MIT-BIH心律失常数据库上进行训练,采用患者内和患者间方案,特别是后者,强烈推荐。在三个数据集上使用标准标准与几种最先进的方法进行比较,证明MMNNS在改进心跳检测和解决ECG心跳分类不平衡方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel multi-module neural network system for imbalanced heartbeats classification

In this paper, a novel multi-module neural network system named MMNNS is proposed to solve the imbalance problem in electrocardiogram (ECG) heartbeats classification. Four submodules are designed to construct the system: preprocessing, imbalance problem processing, feature extraction and classification. Imbalance problem processing module mainly introduces three methods: BLSM, CTFM and 2PT, which are proposed from three aspects of resampling, data feature and algorithm respectively. BLSM is used to synthesize virtual samples linearly around the minority samples. CTFM consists of DAE-based feature extraction part and QRS-based feature selection part, in which selected features and complete features are applied to determine the heartbeat class simultaneously. The processed data are fed into a convolutional neural network (CNN) by applying 2PT to train and fine-tune. MMNNS is trained on MIT-BIH Arrhythmia Database following AAMI standard, using intra-patient and inter-patient scheme, especially the latter which is strongly recommended. The comparisons with several state-of-the-art methods using standard criteria on three datasets demonstrate the superiority of MMNNS for improving detection of heartbeats and addressing imbalance in ECG heartbeats classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications: X
Expert Systems with Applications: X Engineering-Engineering (all)
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board GIMO: A multi-objective anytime rule mining system to ease iterative feedback from domain experts Editorial Board A review on deep learning methods for ECG arrhythmia classification Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1