递归神经网络设计新的生物活性分子

A. Micheli, A. Sperduti, A. Starita, A. Bianucci
{"title":"递归神经网络设计新的生物活性分子","authors":"A. Micheli, A. Sperduti, A. Starita, A. Bianucci","doi":"10.1109/IJCNN.2001.938805","DOIUrl":null,"url":null,"abstract":"In this paper, we face the design of novel molecules belonging to the class of adenine analogues (8-azaadenine derivates), that present a widespread potential therapeutic interest, in the new perspective offered by recursive neural networks for quantitative structure-activity relationships analysis. The generality and flexibility of the method used to process structured domains allows us to propose new solutions to the representation problem of this set of compounds and to obtain good prediction results, as it has been proved by the comparison with the values obtained \"a posteriori\" after synthesis and biological essays of designed molecules.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of new biologically active molecules by recursive neural networks\",\"authors\":\"A. Micheli, A. Sperduti, A. Starita, A. Bianucci\",\"doi\":\"10.1109/IJCNN.2001.938805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we face the design of novel molecules belonging to the class of adenine analogues (8-azaadenine derivates), that present a widespread potential therapeutic interest, in the new perspective offered by recursive neural networks for quantitative structure-activity relationships analysis. The generality and flexibility of the method used to process structured domains allows us to propose new solutions to the representation problem of this set of compounds and to obtain good prediction results, as it has been proved by the comparison with the values obtained \\\"a posteriori\\\" after synthesis and biological essays of designed molecules.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们面对的设计属于腺嘌呤类似物类的新分子(8-氮杂腺嘌呤衍生物),呈现出广泛的潜在治疗兴趣,递归神经网络提供了定量结构-活性关系分析的新视角。处理结构域的方法的通用性和灵活性使我们能够对这组化合物的表示问题提出新的解决方案,并获得良好的预测结果,这一点已经通过与合成后“事后”得到的值和设计分子的生物学论文的比较得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of new biologically active molecules by recursive neural networks
In this paper, we face the design of novel molecules belonging to the class of adenine analogues (8-azaadenine derivates), that present a widespread potential therapeutic interest, in the new perspective offered by recursive neural networks for quantitative structure-activity relationships analysis. The generality and flexibility of the method used to process structured domains allows us to propose new solutions to the representation problem of this set of compounds and to obtain good prediction results, as it has been proved by the comparison with the values obtained "a posteriori" after synthesis and biological essays of designed molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1