{"title":"递归神经网络设计新的生物活性分子","authors":"A. Micheli, A. Sperduti, A. Starita, A. Bianucci","doi":"10.1109/IJCNN.2001.938805","DOIUrl":null,"url":null,"abstract":"In this paper, we face the design of novel molecules belonging to the class of adenine analogues (8-azaadenine derivates), that present a widespread potential therapeutic interest, in the new perspective offered by recursive neural networks for quantitative structure-activity relationships analysis. The generality and flexibility of the method used to process structured domains allows us to propose new solutions to the representation problem of this set of compounds and to obtain good prediction results, as it has been proved by the comparison with the values obtained \"a posteriori\" after synthesis and biological essays of designed molecules.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of new biologically active molecules by recursive neural networks\",\"authors\":\"A. Micheli, A. Sperduti, A. Starita, A. Bianucci\",\"doi\":\"10.1109/IJCNN.2001.938805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we face the design of novel molecules belonging to the class of adenine analogues (8-azaadenine derivates), that present a widespread potential therapeutic interest, in the new perspective offered by recursive neural networks for quantitative structure-activity relationships analysis. The generality and flexibility of the method used to process structured domains allows us to propose new solutions to the representation problem of this set of compounds and to obtain good prediction results, as it has been proved by the comparison with the values obtained \\\"a posteriori\\\" after synthesis and biological essays of designed molecules.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of new biologically active molecules by recursive neural networks
In this paper, we face the design of novel molecules belonging to the class of adenine analogues (8-azaadenine derivates), that present a widespread potential therapeutic interest, in the new perspective offered by recursive neural networks for quantitative structure-activity relationships analysis. The generality and flexibility of the method used to process structured domains allows us to propose new solutions to the representation problem of this set of compounds and to obtain good prediction results, as it has been proved by the comparison with the values obtained "a posteriori" after synthesis and biological essays of designed molecules.