C. Medina-Bailón, O. Badami, H. Carrillo-Nuñez, T. Dutta, D. Nagy, F. Adamu-Lema, V. Georgiev, A. Asenov
{"title":"纳米电子仿真软件(NESS)的增强功能","authors":"C. Medina-Bailón, O. Badami, H. Carrillo-Nuñez, T. Dutta, D. Nagy, F. Adamu-Lema, V. Georgiev, A. Asenov","doi":"10.23919/SISPAD49475.2020.9241594","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a flexible TCAD platform called Nano-Electronic Simulation Software (NESS) which enables the modelling of contemporary future electronic devices combining different simulation paradigms (with different degrees of complexity) in a unified simulation domain. NESS considers confinement-aware band structures, generates the main sources of variability, and can study their impact using different transport models. In particular, this work focuses on the new modules implemented: Kubo-Greenwood solver, Kinetic Monte Carlo solver, Gate Leakage calculation, and a full-band quantum transport solver in the presence of hole-phonon interactions using a mode-space $k \\cdot p$ approach in combination with the existing NEGF module.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enhanced Capabilities of the Nano-Electronic Simulation Software (NESS)\",\"authors\":\"C. Medina-Bailón, O. Badami, H. Carrillo-Nuñez, T. Dutta, D. Nagy, F. Adamu-Lema, V. Georgiev, A. Asenov\",\"doi\":\"10.23919/SISPAD49475.2020.9241594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to present a flexible TCAD platform called Nano-Electronic Simulation Software (NESS) which enables the modelling of contemporary future electronic devices combining different simulation paradigms (with different degrees of complexity) in a unified simulation domain. NESS considers confinement-aware band structures, generates the main sources of variability, and can study their impact using different transport models. In particular, this work focuses on the new modules implemented: Kubo-Greenwood solver, Kinetic Monte Carlo solver, Gate Leakage calculation, and a full-band quantum transport solver in the presence of hole-phonon interactions using a mode-space $k \\\\cdot p$ approach in combination with the existing NEGF module.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Capabilities of the Nano-Electronic Simulation Software (NESS)
The aim of this paper is to present a flexible TCAD platform called Nano-Electronic Simulation Software (NESS) which enables the modelling of contemporary future electronic devices combining different simulation paradigms (with different degrees of complexity) in a unified simulation domain. NESS considers confinement-aware band structures, generates the main sources of variability, and can study their impact using different transport models. In particular, this work focuses on the new modules implemented: Kubo-Greenwood solver, Kinetic Monte Carlo solver, Gate Leakage calculation, and a full-band quantum transport solver in the presence of hole-phonon interactions using a mode-space $k \cdot p$ approach in combination with the existing NEGF module.