随机掺杂和金属栅粒度下堆叠纳米线晶体管的性能预测

S. Dey, E. Mohapatra, J. Jena, S. Das, Tara Prasanna Dash, C. K. Maiti
{"title":"随机掺杂和金属栅粒度下堆叠纳米线晶体管的性能预测","authors":"S. Dey, E. Mohapatra, J. Jena, S. Das, Tara Prasanna Dash, C. K. Maiti","doi":"10.1109/DEVIC.2019.8783687","DOIUrl":null,"url":null,"abstract":"Gate-all-around nanowire field effect transistors (GAA-NW-FETs) in a horizontal configuration is now being considered as a strong candidate to extend today's CMOS technology to its ultimate scaling limits. In this paper, full 3-D device simulations are performed to study the effect of random discrete dopants (RDD) and metal gate granularity (MGG) on the performance of a 10nm channel length vertically stacked silicon nanowire FETs. The impact of metal grain crystallographic orientation on the gate work function and presence of discrete dopants on transistor threshold voltage is reported. The discrete dopants have been distributed randomly in the source/drain and channel regions of the device. Due to the small dimensions of the transistor a quantum transport formalism has been deployed in simulation. Our results show the magnitude and importance of RDD and MGG and the need for process optimization to minimize device parameter variations in sub-10nm technology nodes.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Prediction of Stacked Nanowire Transistors in the Presence of Random Discrete Dopants and Metal Gate Granularity\",\"authors\":\"S. Dey, E. Mohapatra, J. Jena, S. Das, Tara Prasanna Dash, C. K. Maiti\",\"doi\":\"10.1109/DEVIC.2019.8783687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gate-all-around nanowire field effect transistors (GAA-NW-FETs) in a horizontal configuration is now being considered as a strong candidate to extend today's CMOS technology to its ultimate scaling limits. In this paper, full 3-D device simulations are performed to study the effect of random discrete dopants (RDD) and metal gate granularity (MGG) on the performance of a 10nm channel length vertically stacked silicon nanowire FETs. The impact of metal grain crystallographic orientation on the gate work function and presence of discrete dopants on transistor threshold voltage is reported. The discrete dopants have been distributed randomly in the source/drain and channel regions of the device. Due to the small dimensions of the transistor a quantum transport formalism has been deployed in simulation. Our results show the magnitude and importance of RDD and MGG and the need for process optimization to minimize device parameter variations in sub-10nm technology nodes.\",\"PeriodicalId\":294095,\"journal\":{\"name\":\"2019 Devices for Integrated Circuit (DevIC)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Devices for Integrated Circuit (DevIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVIC.2019.8783687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水平结构的栅极全能纳米线场效应晶体管(gaa - nw - fet)现在被认为是将今天的CMOS技术扩展到其最终缩放极限的强有力的候选者。本文通过全三维器件仿真研究了随机离散掺杂剂(RDD)和金属栅极粒度(MGG)对10nm沟道长度垂直堆叠硅纳米线场效应管性能的影响。报道了金属晶粒取向对栅极功函数的影响以及离散掺杂剂的存在对晶体管阈值电压的影响。离散掺杂剂随机分布在器件的源/漏和通道区域。由于晶体管的尺寸小,在模拟中采用了量子输运形式。我们的研究结果显示了RDD和MGG的规模和重要性,以及在亚10nm技术节点上进行工艺优化以最小化器件参数变化的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Prediction of Stacked Nanowire Transistors in the Presence of Random Discrete Dopants and Metal Gate Granularity
Gate-all-around nanowire field effect transistors (GAA-NW-FETs) in a horizontal configuration is now being considered as a strong candidate to extend today's CMOS technology to its ultimate scaling limits. In this paper, full 3-D device simulations are performed to study the effect of random discrete dopants (RDD) and metal gate granularity (MGG) on the performance of a 10nm channel length vertically stacked silicon nanowire FETs. The impact of metal grain crystallographic orientation on the gate work function and presence of discrete dopants on transistor threshold voltage is reported. The discrete dopants have been distributed randomly in the source/drain and channel regions of the device. Due to the small dimensions of the transistor a quantum transport formalism has been deployed in simulation. Our results show the magnitude and importance of RDD and MGG and the need for process optimization to minimize device parameter variations in sub-10nm technology nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Drain Current Model of UTBB SOI MOSFET with lateral dual gates to Suppress Short Channel Effect Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs Work-function modulated hetero gate charge plasma TFET to enhance the device performance All-optical Walsh-Hadamard code Generation using MZI Performance Analysis of Staggered Heterojunction based SRG TFET biosensor for health IoT application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1