分布式图处理的弹性研究

Sietse Au, Alexandru Uta, A. Ilyushkin, A. Iosup
{"title":"分布式图处理的弹性研究","authors":"Sietse Au, Alexandru Uta, A. Ilyushkin, A. Iosup","doi":"10.1109/CCGRID.2018.00062","DOIUrl":null,"url":null,"abstract":"Graphs are a natural fit for modeling concepts used in solving diverse problems in science, commerce, engineering, and governance. Responding to the variety of graph data and algorithms, many parallel and distributed graph processing systems exist. However, until now these platforms use a static model of deployment: they only run on a pre-defined set of machines. This raises many conceptual and pragmatic issues, including misfit with the highly dynamic nature of graph processing, and could lead to resource waste and high operational costs. In contrast, in this work we explore a dynamic model of deployment. We first characterize workload dynamicity, beyond mere active-vertex variability. Then, to conduct an in-depth elasticity study of distributed graph processing, we build a prototype, JoyGraph, which is the first such system that implements complex, policy-based, and fine-grained elasticity. Using the state-of-the-art LDBC Graphalytics benchmark and the SPEC Cloud Group's elasticity metrics, we show the benefits of elasticity in graph processing: (i) improved resource utilization, (ii) reduced operational costs, and (iii) aligned operation-workload dynamicity. Furthermore, we explore the cost of elasticity in graph processing. We identify a key drawback: although elasticity does not degrade application throughput, graph-processing workloads are sensitive to data movement while leasing or releasing resources.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Elasticity Study of Distributed Graph Processing\",\"authors\":\"Sietse Au, Alexandru Uta, A. Ilyushkin, A. Iosup\",\"doi\":\"10.1109/CCGRID.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs are a natural fit for modeling concepts used in solving diverse problems in science, commerce, engineering, and governance. Responding to the variety of graph data and algorithms, many parallel and distributed graph processing systems exist. However, until now these platforms use a static model of deployment: they only run on a pre-defined set of machines. This raises many conceptual and pragmatic issues, including misfit with the highly dynamic nature of graph processing, and could lead to resource waste and high operational costs. In contrast, in this work we explore a dynamic model of deployment. We first characterize workload dynamicity, beyond mere active-vertex variability. Then, to conduct an in-depth elasticity study of distributed graph processing, we build a prototype, JoyGraph, which is the first such system that implements complex, policy-based, and fine-grained elasticity. Using the state-of-the-art LDBC Graphalytics benchmark and the SPEC Cloud Group's elasticity metrics, we show the benefits of elasticity in graph processing: (i) improved resource utilization, (ii) reduced operational costs, and (iii) aligned operation-workload dynamicity. Furthermore, we explore the cost of elasticity in graph processing. We identify a key drawback: although elasticity does not degrade application throughput, graph-processing workloads are sensitive to data movement while leasing or releasing resources.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图非常适合用于解决科学、商业、工程和治理中的各种问题的概念建模。为了应对图形数据和算法的多样性,存在许多并行和分布式图形处理系统。然而,到目前为止,这些平台使用的是静态部署模型:它们只运行在一组预定义的机器上。这引发了许多概念和实际问题,包括与图形处理的高度动态特性不匹配,并可能导致资源浪费和高运营成本。相反,在这项工作中,我们探索了一个动态的部署模型。我们首先描述工作负载的动态性,而不仅仅是活动顶点的可变性。然后,为了深入研究分布式图形处理的弹性,我们构建了一个原型JoyGraph,这是第一个实现复杂的、基于策略的、细粒度弹性的系统。使用最先进的LDBC graphhalytics基准测试和SPEC Cloud Group的弹性指标,我们展示了弹性在图形处理中的好处:(i)提高资源利用率,(ii)降低运营成本,以及(iii)调整操作工作负载动态。此外,我们还探讨了图处理中的弹性代价。我们发现了一个关键的缺点:尽管弹性不会降低应用程序吞吐量,但图形处理工作负载在租用或释放资源时对数据移动很敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Elasticity Study of Distributed Graph Processing
Graphs are a natural fit for modeling concepts used in solving diverse problems in science, commerce, engineering, and governance. Responding to the variety of graph data and algorithms, many parallel and distributed graph processing systems exist. However, until now these platforms use a static model of deployment: they only run on a pre-defined set of machines. This raises many conceptual and pragmatic issues, including misfit with the highly dynamic nature of graph processing, and could lead to resource waste and high operational costs. In contrast, in this work we explore a dynamic model of deployment. We first characterize workload dynamicity, beyond mere active-vertex variability. Then, to conduct an in-depth elasticity study of distributed graph processing, we build a prototype, JoyGraph, which is the first such system that implements complex, policy-based, and fine-grained elasticity. Using the state-of-the-art LDBC Graphalytics benchmark and the SPEC Cloud Group's elasticity metrics, we show the benefits of elasticity in graph processing: (i) improved resource utilization, (ii) reduced operational costs, and (iii) aligned operation-workload dynamicity. Furthermore, we explore the cost of elasticity in graph processing. We identify a key drawback: although elasticity does not degrade application throughput, graph-processing workloads are sensitive to data movement while leasing or releasing resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1