基于多特征提取器和分类器的热带树种识别系统

M. Khalid, R. Yusof, Anis Salwa Mohd Khairuddin
{"title":"基于多特征提取器和分类器的热带树种识别系统","authors":"M. Khalid, R. Yusof, Anis Salwa Mohd Khairuddin","doi":"10.1109/ICA.2011.6130117","DOIUrl":null,"url":null,"abstract":"An automated wood recognition system is designed to classify tropical wood species. The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists of Kmeans clustering and kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and K-Nearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier. The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.","PeriodicalId":132474,"journal":{"name":"2011 2nd International Conference on Instrumentation Control and Automation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Tropical wood species recognition system based on multi-feature extractors and classifiers\",\"authors\":\"M. Khalid, R. Yusof, Anis Salwa Mohd Khairuddin\",\"doi\":\"10.1109/ICA.2011.6130117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An automated wood recognition system is designed to classify tropical wood species. The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists of Kmeans clustering and kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and K-Nearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier. The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.\",\"PeriodicalId\":132474,\"journal\":{\"name\":\"2011 2nd International Conference on Instrumentation Control and Automation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Instrumentation Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICA.2011.6130117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Instrumentation Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICA.2011.6130117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

设计了一种用于热带树种分类的木材自动识别系统。基于基本灰度Aura矩阵(BGLAM)和孔隙分布统计属性(SPPD)两种特征提取技术提取木材特征。针对热带木材树种分离边界的非线性,提出了一种由Kmeans聚类和核判别分析(KDA)组成的预分类阶段。最后,实现了线性判别分析(LDA)分类器和k近邻(KNN)分类器进行比较。本研究采用KNN分类器和LDA分类器对系统进行了预分类和未预分类的比较。结果表明,加入预分类阶段后,LDA和KNN分类器的准确率都提高了12%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tropical wood species recognition system based on multi-feature extractors and classifiers
An automated wood recognition system is designed to classify tropical wood species. The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists of Kmeans clustering and kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and K-Nearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier. The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of partial slip surface at lubricated-MEMS Safety analysis of linear system with SOS for complex eigenvalues Determination of flight attitude using kalman filter for an agricultural unmanned helicopter Dynamic uav path planning for moving target intercept in 3D Accuracy evaluation of delivered measurements to HMI in a real SCADA automation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1