基于unet++的遥感图像增强场景分割

Cheng Chen, L. Fan
{"title":"基于unet++的遥感图像增强场景分割","authors":"Cheng Chen, L. Fan","doi":"10.1109/ICCEAI52939.2021.00039","DOIUrl":null,"url":null,"abstract":"Deep learning is the current advanced solution for remote sensing segmentation. Massive high-quality training datasets are the basic inputs to deep learning networks for solving the segmentation problems. Most of the existing remotely sensed image datasets have low segmentation accuracy due to their coarse spatial resolution and the susceptibility to image noise. Image augmentation is a technical means of effectively solving deep learning trainings in small and/or low-quality training datasets, which has continuously accompanied the development of deep learning and machine vision. Many augmentation techniques and methods have been proposed to enrich and augment the training datasets and to improve the generalization ability of neural networks. Common image augmentation methods are based mainly on image transformations, such as photometric changes, flips, rotations, dithering and blurring. In this paper, the segmentation task of multispectral remote sensing data is validated by augmentation methods. The segmentation accuracy was found to be 96.10%, which is higher than that (92.36%) of the corresponding un-augmented data.","PeriodicalId":331409,"journal":{"name":"2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scene segmentation of remotely sensed images with data augmentation using U-net++\",\"authors\":\"Cheng Chen, L. Fan\",\"doi\":\"10.1109/ICCEAI52939.2021.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is the current advanced solution for remote sensing segmentation. Massive high-quality training datasets are the basic inputs to deep learning networks for solving the segmentation problems. Most of the existing remotely sensed image datasets have low segmentation accuracy due to their coarse spatial resolution and the susceptibility to image noise. Image augmentation is a technical means of effectively solving deep learning trainings in small and/or low-quality training datasets, which has continuously accompanied the development of deep learning and machine vision. Many augmentation techniques and methods have been proposed to enrich and augment the training datasets and to improve the generalization ability of neural networks. Common image augmentation methods are based mainly on image transformations, such as photometric changes, flips, rotations, dithering and blurring. In this paper, the segmentation task of multispectral remote sensing data is validated by augmentation methods. The segmentation accuracy was found to be 96.10%, which is higher than that (92.36%) of the corresponding un-augmented data.\",\"PeriodicalId\":331409,\"journal\":{\"name\":\"2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEAI52939.2021.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEAI52939.2021.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度学习是当前遥感分割的先进解决方案。海量高质量的训练数据集是深度学习网络解决分割问题的基础输入。现有的遥感图像数据集由于空间分辨率较低,易受图像噪声的影响,分割精度较低。图像增强是一种有效解决小质量和/或低质量训练数据集上深度学习训练的技术手段,一直伴随着深度学习和机器视觉的发展。为了丰富和增强训练数据集,提高神经网络的泛化能力,人们提出了许多增强技术和方法。常用的图像增强方法主要基于图像变换,如光度变化、翻转、旋转、抖动和模糊。本文采用增强方法对多光谱遥感数据的分割任务进行了验证。结果表明,该算法的分割准确率为96.10%,高于未增强数据的分割准确率(92.36%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scene segmentation of remotely sensed images with data augmentation using U-net++
Deep learning is the current advanced solution for remote sensing segmentation. Massive high-quality training datasets are the basic inputs to deep learning networks for solving the segmentation problems. Most of the existing remotely sensed image datasets have low segmentation accuracy due to their coarse spatial resolution and the susceptibility to image noise. Image augmentation is a technical means of effectively solving deep learning trainings in small and/or low-quality training datasets, which has continuously accompanied the development of deep learning and machine vision. Many augmentation techniques and methods have been proposed to enrich and augment the training datasets and to improve the generalization ability of neural networks. Common image augmentation methods are based mainly on image transformations, such as photometric changes, flips, rotations, dithering and blurring. In this paper, the segmentation task of multispectral remote sensing data is validated by augmentation methods. The segmentation accuracy was found to be 96.10%, which is higher than that (92.36%) of the corresponding un-augmented data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inventory sharing based on supplier-led inventory transshipment Nursing intervention of postoperative hypoglycemia in elderly patients with endometrial cancer and diabetes mellitus Improved Deeplabv3 For Better Road Segmentation In Remote Sensing Images A Literature Review of Innovation and Corporate Social Responsibilities Heart sound recognition method of congenital heart disease based on improved cepstrum coefficient features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1