{"title":"完美磁耦合超低损耗变压器在标准RFCMOS技术中的实现","authors":"Yo‐Sheng Lin, Hsiao-Bin Liang, Yan-Ru Tzeng","doi":"10.1109/EDSSC.2005.1635300","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a single-turn multiple-layer interlaced stacked transformer structure with nearly perfect magnetic-coupling factor (kIM∼ 1) using standard mixed-signal/RF CMOS (or BiCMOS) technology. A single-turn six-layer interlaced stacked transformer was implemented to demonstrate the proposed structure. Temperature dependence (from -25 °C to 175°C) of the quality-factor (Q-factor), kIm, resistive-coupling factor (kRe), maximum available power gain (GAmax), and minimum noise figure (NFmin) performances of the transformer are reported. State-of-the-art GAmaxof 0.762 and 0.904 (i.e. NFminof 1.181 dB and 0.437 dB) have been achieved at 5.2 GHz and 8 GHz, respectively, at room temperature, mainly due to the perfect magnetic-coupling factor and the high resistive-coupling factor. The present analysis is helpful for RF engineers to design ultra-low-voltage high-performance transformer-feedback LNAs and VCOs, and other RF-ICs which include transformers.","PeriodicalId":429314,"journal":{"name":"2005 IEEE Conference on Electron Devices and Solid-State Circuits","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementation of Perfect-Magnetic-Coupling Ultra-Low-Loss Transformer in Standard RFCMOS Technology\",\"authors\":\"Yo‐Sheng Lin, Hsiao-Bin Liang, Yan-Ru Tzeng\",\"doi\":\"10.1109/EDSSC.2005.1635300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a single-turn multiple-layer interlaced stacked transformer structure with nearly perfect magnetic-coupling factor (kIM∼ 1) using standard mixed-signal/RF CMOS (or BiCMOS) technology. A single-turn six-layer interlaced stacked transformer was implemented to demonstrate the proposed structure. Temperature dependence (from -25 °C to 175°C) of the quality-factor (Q-factor), kIm, resistive-coupling factor (kRe), maximum available power gain (GAmax), and minimum noise figure (NFmin) performances of the transformer are reported. State-of-the-art GAmaxof 0.762 and 0.904 (i.e. NFminof 1.181 dB and 0.437 dB) have been achieved at 5.2 GHz and 8 GHz, respectively, at room temperature, mainly due to the perfect magnetic-coupling factor and the high resistive-coupling factor. The present analysis is helpful for RF engineers to design ultra-low-voltage high-performance transformer-feedback LNAs and VCOs, and other RF-ICs which include transformers.\",\"PeriodicalId\":429314,\"journal\":{\"name\":\"2005 IEEE Conference on Electron Devices and Solid-State Circuits\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Conference on Electron Devices and Solid-State Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2005.1635300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Conference on Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2005.1635300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Perfect-Magnetic-Coupling Ultra-Low-Loss Transformer in Standard RFCMOS Technology
In this paper, we propose a single-turn multiple-layer interlaced stacked transformer structure with nearly perfect magnetic-coupling factor (kIM∼ 1) using standard mixed-signal/RF CMOS (or BiCMOS) technology. A single-turn six-layer interlaced stacked transformer was implemented to demonstrate the proposed structure. Temperature dependence (from -25 °C to 175°C) of the quality-factor (Q-factor), kIm, resistive-coupling factor (kRe), maximum available power gain (GAmax), and minimum noise figure (NFmin) performances of the transformer are reported. State-of-the-art GAmaxof 0.762 and 0.904 (i.e. NFminof 1.181 dB and 0.437 dB) have been achieved at 5.2 GHz and 8 GHz, respectively, at room temperature, mainly due to the perfect magnetic-coupling factor and the high resistive-coupling factor. The present analysis is helpful for RF engineers to design ultra-low-voltage high-performance transformer-feedback LNAs and VCOs, and other RF-ICs which include transformers.