考虑孤立微电网和地理约束的远程配电网规划的进化算法

Manou Rosenberg, Mark Reynolds, T. French, Lyndon While
{"title":"考虑孤立微电网和地理约束的远程配电网规划的进化算法","authors":"Manou Rosenberg, Mark Reynolds, T. French, Lyndon While","doi":"10.1109/CEC55065.2022.9870233","DOIUrl":null,"url":null,"abstract":"In this study we propose obstacle-aware evolution-ary algorithms to identify optimised network topologies for electricity distribution networks including isolated microgrids or stand-alone power systems. We outline the extension of two evo-lutionary algorithms that are modified to consider different types of geographically constrained areas in electricity distribution planning. These areas are represented as polygonal obstacles that either cannot be traversed or cause a higher weight factor when traversing. Both proposed evolutionary algorithms are extended such that they find optimised network solutions that avoid solid obstacles and consider the increased cost of traversing soft obstacles. The algorithms are tested and compared on different types of problem instances with solid and soft obstacles and the problem-specific evolutionary algorithm can be shown to successfully find low cost network topologies on a range of different test instances.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Algorithms for Planning Remote Electricity Distribution Networks Considering Isolated Microgrids and Geographical Constraints\",\"authors\":\"Manou Rosenberg, Mark Reynolds, T. French, Lyndon While\",\"doi\":\"10.1109/CEC55065.2022.9870233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we propose obstacle-aware evolution-ary algorithms to identify optimised network topologies for electricity distribution networks including isolated microgrids or stand-alone power systems. We outline the extension of two evo-lutionary algorithms that are modified to consider different types of geographically constrained areas in electricity distribution planning. These areas are represented as polygonal obstacles that either cannot be traversed or cause a higher weight factor when traversing. Both proposed evolutionary algorithms are extended such that they find optimised network solutions that avoid solid obstacles and consider the increased cost of traversing soft obstacles. The algorithms are tested and compared on different types of problem instances with solid and soft obstacles and the problem-specific evolutionary algorithm can be shown to successfully find low cost network topologies on a range of different test instances.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了障碍物感知进化算法来识别配电网络的优化网络拓扑,包括孤立的微电网或独立的电力系统。我们概述了两种进化算法的扩展,这两种算法经过修改,可以考虑配电规划中不同类型的地理约束区域。这些区域被表示为多边形障碍物,这些障碍物要么无法穿越,要么在穿越时造成更高的权重因子。这两种进化算法都得到了扩展,从而找到了优化的网络解决方案,避免了实体障碍,并考虑了穿越软障碍的成本增加。在不同类型的问题实例上对算法进行了测试和比较,结果表明针对特定问题的进化算法在一系列不同的测试实例上成功地找到了低成本的网络拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Algorithms for Planning Remote Electricity Distribution Networks Considering Isolated Microgrids and Geographical Constraints
In this study we propose obstacle-aware evolution-ary algorithms to identify optimised network topologies for electricity distribution networks including isolated microgrids or stand-alone power systems. We outline the extension of two evo-lutionary algorithms that are modified to consider different types of geographically constrained areas in electricity distribution planning. These areas are represented as polygonal obstacles that either cannot be traversed or cause a higher weight factor when traversing. Both proposed evolutionary algorithms are extended such that they find optimised network solutions that avoid solid obstacles and consider the increased cost of traversing soft obstacles. The algorithms are tested and compared on different types of problem instances with solid and soft obstacles and the problem-specific evolutionary algorithm can be shown to successfully find low cost network topologies on a range of different test instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1