基于增强主动形状模型的彩色图像人脸特征提取

M. Mahoor, M. Abdel-Mottaleb
{"title":"基于增强主动形状模型的彩色图像人脸特征提取","authors":"M. Mahoor, M. Abdel-Mottaleb","doi":"10.1109/FGR.2006.51","DOIUrl":null,"url":null,"abstract":"In this paper, we present an improved active shape model (ASM) for facial feature extraction. The original ASM method developed by Cootes et al. highly relies on the initialization and the representation of the local structure of the facial features in the image. We use color information to improve the ASM approach for facial feature extraction. The color information is used to localize the centers of the mouth and the eyes to assist the initialization step. Moreover, we model the local structure of the feature points in the RGB color space. Besides, we use 2D affine transformation to align facial features that are perturbed by head pose variations. In fact, the 2D affine transformation compensates for the effects of both head pose variations and the projection of 3D data to 2D. Experiments on a face database of 50 subjects show that our approach outperforms the standard ASM and is successful in facial feature extraction","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Facial features extraction in color images using enhanced active shape model\",\"authors\":\"M. Mahoor, M. Abdel-Mottaleb\",\"doi\":\"10.1109/FGR.2006.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an improved active shape model (ASM) for facial feature extraction. The original ASM method developed by Cootes et al. highly relies on the initialization and the representation of the local structure of the facial features in the image. We use color information to improve the ASM approach for facial feature extraction. The color information is used to localize the centers of the mouth and the eyes to assist the initialization step. Moreover, we model the local structure of the feature points in the RGB color space. Besides, we use 2D affine transformation to align facial features that are perturbed by head pose variations. In fact, the 2D affine transformation compensates for the effects of both head pose variations and the projection of 3D data to 2D. Experiments on a face database of 50 subjects show that our approach outperforms the standard ASM and is successful in facial feature extraction\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

本文提出了一种改进的主动形状模型(ASM)用于人脸特征提取。Cootes等人开发的原始ASM方法高度依赖于图像中面部特征局部结构的初始化和表示。我们利用颜色信息来改进ASM的人脸特征提取方法。颜色信息用于定位嘴巴和眼睛的中心,以辅助初始化步骤。此外,我们在RGB色彩空间中对特征点的局部结构进行建模。此外,我们使用二维仿射变换来对齐受头部姿态变化干扰的面部特征。事实上,二维仿射变换补偿了头部姿势变化和3D数据到2D的投影的影响。在50个受试者的人脸数据库上进行的实验表明,该方法优于标准的ASM,能够成功地提取人脸特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facial features extraction in color images using enhanced active shape model
In this paper, we present an improved active shape model (ASM) for facial feature extraction. The original ASM method developed by Cootes et al. highly relies on the initialization and the representation of the local structure of the facial features in the image. We use color information to improve the ASM approach for facial feature extraction. The color information is used to localize the centers of the mouth and the eyes to assist the initialization step. Moreover, we model the local structure of the feature points in the RGB color space. Besides, we use 2D affine transformation to align facial features that are perturbed by head pose variations. In fact, the 2D affine transformation compensates for the effects of both head pose variations and the projection of 3D data to 2D. Experiments on a face database of 50 subjects show that our approach outperforms the standard ASM and is successful in facial feature extraction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1