具有凸壳约束的综合控制方法:贝叶斯极大后验方法

Gyuhyeong Goh, Jisang Yu
{"title":"具有凸壳约束的综合控制方法:贝叶斯极大后验方法","authors":"Gyuhyeong Goh, Jisang Yu","doi":"10.1093/ECTJ/UTAB015","DOIUrl":null,"url":null,"abstract":"Synthetic control methods have gained popularity among causal studies with observational data, particularly when estimating the impacts of the interventions that are implemented to a small number of large units. Implementing the synthetic control methods faces two major challenges: a) estimating weights for each control unit to create a synthetic control and b) providing statistical inferences. To overcome these challenges, we propose a Bayesian framework that implements the synthetic control method with the parallelly shiftable convex hull and provides a useful Bayesian inference, which is drawn from the duality between a penalized least squares method and a Bayesian Maximum A Posteriori (MAP) approach. Simulation results indicate that the proposed method leads to smaller biases compared to alternatives. We apply our Bayesian method to the real data example of Abadie and Gardeazabal (2003) and find that the treatment effects are statistically significant during the subset of the post-treatment period.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthetic control method with convex hull restrictions: a Bayesian maximum a posteriori approach\",\"authors\":\"Gyuhyeong Goh, Jisang Yu\",\"doi\":\"10.1093/ECTJ/UTAB015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic control methods have gained popularity among causal studies with observational data, particularly when estimating the impacts of the interventions that are implemented to a small number of large units. Implementing the synthetic control methods faces two major challenges: a) estimating weights for each control unit to create a synthetic control and b) providing statistical inferences. To overcome these challenges, we propose a Bayesian framework that implements the synthetic control method with the parallelly shiftable convex hull and provides a useful Bayesian inference, which is drawn from the duality between a penalized least squares method and a Bayesian Maximum A Posteriori (MAP) approach. Simulation results indicate that the proposed method leads to smaller biases compared to alternatives. We apply our Bayesian method to the real data example of Abadie and Gardeazabal (2003) and find that the treatment effects are statistically significant during the subset of the post-treatment period.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ECTJ/UTAB015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAB015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

综合控制方法在具有观察数据的因果研究中越来越受欢迎,特别是在估计对少数大单位实施的干预措施的影响时。实现综合控制方法面临两个主要挑战:a)估计每个控制单元的权重以创建综合控制;b)提供统计推断。为了克服这些挑战,我们提出了一个贝叶斯框架,该框架实现了具有并行可移动凸壳的综合控制方法,并提供了一个有用的贝叶斯推理,该推理来自惩罚最小二乘法和贝叶斯最大后验(MAP)方法之间的对偶性。仿真结果表明,与其他方法相比,该方法的偏差较小。我们将贝叶斯方法应用到Abadie和Gardeazabal(2003)的真实数据示例中,发现治疗效果在治疗后时期的子集中具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic control method with convex hull restrictions: a Bayesian maximum a posteriori approach
Synthetic control methods have gained popularity among causal studies with observational data, particularly when estimating the impacts of the interventions that are implemented to a small number of large units. Implementing the synthetic control methods faces two major challenges: a) estimating weights for each control unit to create a synthetic control and b) providing statistical inferences. To overcome these challenges, we propose a Bayesian framework that implements the synthetic control method with the parallelly shiftable convex hull and provides a useful Bayesian inference, which is drawn from the duality between a penalized least squares method and a Bayesian Maximum A Posteriori (MAP) approach. Simulation results indicate that the proposed method leads to smaller biases compared to alternatives. We apply our Bayesian method to the real data example of Abadie and Gardeazabal (2003) and find that the treatment effects are statistically significant during the subset of the post-treatment period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1