{"title":"基于模糊2型聚类方法的纹理图像分割描述符","authors":"Lotfi Tlig, M. Sayadi, Farhat Fnaeich","doi":"10.1109/IPTA.2010.5586746","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach\",\"authors\":\"Lotfi Tlig, M. Sayadi, Farhat Fnaeich\",\"doi\":\"10.1109/IPTA.2010.5586746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new descriptor for textured image segmentation based on fuzzy type-2 clustering approach
In this paper we present a novel segmentation approach that performs fuzzy clustering and feature extraction. The proposed method consists in forming a new descriptor combining a set of texture sub-features derived from the Grating Cell Operator (GCO) responses of an optimized Gabor filter bank, and Local Binary Pattern (LBP) outputs. The new feature vector offers two advantages. First, it only considers the optimized filters. Second, it aims to characterize both micro and macro textures. In addition, an extended version of a type 2 fuzzy c-means clustering algorithm is proposed. The extension is based on the integration of spatial information in the membership function (MF). The performance of this method is demonstrated by several experiments on natural textures.