基于SVR和小波分解的混合预测算法

Timotheos Paraskevopoulos, Peter N. Posch
{"title":"基于SVR和小波分解的混合预测算法","authors":"Timotheos Paraskevopoulos, Peter N. Posch","doi":"10.2139/ssrn.3199925","DOIUrl":null,"url":null,"abstract":"We present a forecasting algorithm based on support vector regression emphasizing thepractical benefits of wavelets for financial time series. We utilize an e ective de-noising algorithmbased on wavelets feasible under the assumption that the data is generated by a systematic pattern plusrandom noise. The learning algorithm focuses solely on the time frequency components, instead ofthe full time series, leading to a more general approach. Our findings propose how machine learningcan be useful for data science applications in combination with signal processing methods. The timefrequencydecomposition enables the learning algorithm to solely focus on periodical components thatare beneficial to the forecasting power as we drop features with low explanatory power. The proposedintegration of feature selection and parameter optimization in a single optimization step enable theproposed algorithm to be scaled for a variety of applications. Applying the algorithm to real lifefinancial data shows wavelet decompositions based on the Daubechie and Coiflet basis functions todeliver the best results for the classification task.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Hybrid Forecasting Algorithm Based on SVR and Wavelet Decomposition\",\"authors\":\"Timotheos Paraskevopoulos, Peter N. Posch\",\"doi\":\"10.2139/ssrn.3199925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a forecasting algorithm based on support vector regression emphasizing thepractical benefits of wavelets for financial time series. We utilize an e ective de-noising algorithmbased on wavelets feasible under the assumption that the data is generated by a systematic pattern plusrandom noise. The learning algorithm focuses solely on the time frequency components, instead ofthe full time series, leading to a more general approach. Our findings propose how machine learningcan be useful for data science applications in combination with signal processing methods. The timefrequencydecomposition enables the learning algorithm to solely focus on periodical components thatare beneficial to the forecasting power as we drop features with low explanatory power. The proposedintegration of feature selection and parameter optimization in a single optimization step enable theproposed algorithm to be scaled for a variety of applications. Applying the algorithm to real lifefinancial data shows wavelet decompositions based on the Daubechie and Coiflet basis functions todeliver the best results for the classification task.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3199925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3199925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于支持向量回归的预测算法,强调了小波对金融时间序列的实际好处。在假设数据是由系统模式和随机噪声产生的情况下,我们采用了一种有效的基于小波的去噪算法。学习算法只关注时间频率分量,而不是整个时间序列,从而导致更通用的方法。我们的研究结果表明,机器学习与信号处理方法相结合,如何在数据科学应用中发挥作用。时频分解使学习算法只关注有利于预测能力的周期性成分,而忽略了解释力较低的特征。在单个优化步骤中提出的特征选择和参数优化的集成使所提出的算法能够扩展到各种应用。将该算法应用于现实生活中的金融数据表明,基于Daubechie和Coiflet基函数的小波分解可以为分类任务提供最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Forecasting Algorithm Based on SVR and Wavelet Decomposition
We present a forecasting algorithm based on support vector regression emphasizing thepractical benefits of wavelets for financial time series. We utilize an e ective de-noising algorithmbased on wavelets feasible under the assumption that the data is generated by a systematic pattern plusrandom noise. The learning algorithm focuses solely on the time frequency components, instead ofthe full time series, leading to a more general approach. Our findings propose how machine learningcan be useful for data science applications in combination with signal processing methods. The timefrequencydecomposition enables the learning algorithm to solely focus on periodical components thatare beneficial to the forecasting power as we drop features with low explanatory power. The proposedintegration of feature selection and parameter optimization in a single optimization step enable theproposed algorithm to be scaled for a variety of applications. Applying the algorithm to real lifefinancial data shows wavelet decompositions based on the Daubechie and Coiflet basis functions todeliver the best results for the classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1