基于全可编程片上系统的多尺度二值化神经网络应用

Maoyang Xiang, T. Teo
{"title":"基于全可编程片上系统的多尺度二值化神经网络应用","authors":"Maoyang Xiang, T. Teo","doi":"10.1109/MCSoC51149.2021.00030","DOIUrl":null,"url":null,"abstract":"Binary neural networks (BNNs) are particularly well-suited for low-power embedded devices with limited computational capabilities. Due to the binary weight parameters, it significantly reduces memory footprint and arithmetic logic unit operations. Nevertheless, one of the disadvantages of BNN is low accuracy and sharp optimization space. Several studies of BNNs have recently shown improved accuracy in various tests via more operations and more complicated topologies. This approach, however, is incompatible with the embedded BNN application since it requires complicated data type translation. Hence, We propose a novel approach for the BNN application on the embedded system with multi-scale neural network topology in this research from two optimization perspectives: hardware structure and BNN topology, which preserves more low-level information during the feed-forward process with few operations. Our network topology achieves 91.3% accuracy for the CIFAR-10 dataset, one of the highest recorded by BNN and can process 537 tiny pictures per second when deployed on an All programmable System on Chip (APSoc) device with 4.4W power consumption.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-scale Binarized Neural Network Application Based on All Programmable System on Chip\",\"authors\":\"Maoyang Xiang, T. Teo\",\"doi\":\"10.1109/MCSoC51149.2021.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary neural networks (BNNs) are particularly well-suited for low-power embedded devices with limited computational capabilities. Due to the binary weight parameters, it significantly reduces memory footprint and arithmetic logic unit operations. Nevertheless, one of the disadvantages of BNN is low accuracy and sharp optimization space. Several studies of BNNs have recently shown improved accuracy in various tests via more operations and more complicated topologies. This approach, however, is incompatible with the embedded BNN application since it requires complicated data type translation. Hence, We propose a novel approach for the BNN application on the embedded system with multi-scale neural network topology in this research from two optimization perspectives: hardware structure and BNN topology, which preserves more low-level information during the feed-forward process with few operations. Our network topology achieves 91.3% accuracy for the CIFAR-10 dataset, one of the highest recorded by BNN and can process 537 tiny pictures per second when deployed on an All programmable System on Chip (APSoc) device with 4.4W power consumption.\",\"PeriodicalId\":166811,\"journal\":{\"name\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"451 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC51149.2021.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二进制神经网络(bnn)特别适合于计算能力有限的低功耗嵌入式设备。由于采用二进制权重参数,它显著减少了内存占用和算术逻辑单元操作。然而,BNN的缺点之一是精度低,优化空间大。最近对bnn的几项研究表明,通过更多的操作和更复杂的拓扑结构,在各种测试中提高了准确性。然而,这种方法与嵌入式BNN应用程序不兼容,因为它需要复杂的数据类型转换。因此,本研究从硬件结构优化和BNN拓扑优化两方面提出了一种新颖的BNN在多尺度神经网络拓扑的嵌入式系统中的应用方法,该方法在前馈过程中以较少的操作保留了更多的底层信息。我们的网络拓扑在CIFAR-10数据集上实现了91.3%的准确率,这是BNN记录的最高准确率之一,当部署在功耗为4.4W的全可编程片上系统(APSoc)设备上时,每秒可以处理537张微小图片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-scale Binarized Neural Network Application Based on All Programmable System on Chip
Binary neural networks (BNNs) are particularly well-suited for low-power embedded devices with limited computational capabilities. Due to the binary weight parameters, it significantly reduces memory footprint and arithmetic logic unit operations. Nevertheless, one of the disadvantages of BNN is low accuracy and sharp optimization space. Several studies of BNNs have recently shown improved accuracy in various tests via more operations and more complicated topologies. This approach, however, is incompatible with the embedded BNN application since it requires complicated data type translation. Hence, We propose a novel approach for the BNN application on the embedded system with multi-scale neural network topology in this research from two optimization perspectives: hardware structure and BNN topology, which preserves more low-level information during the feed-forward process with few operations. Our network topology achieves 91.3% accuracy for the CIFAR-10 dataset, one of the highest recorded by BNN and can process 537 tiny pictures per second when deployed on an All programmable System on Chip (APSoc) device with 4.4W power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1