在Pacitan中使用乌鸦搜索算法(CSA)对自能数据(SP)进行深度和斜边研究

A. Haryono, Reni Agustin
{"title":"在Pacitan中使用乌鸦搜索算法(CSA)对自能数据(SP)进行深度和斜边研究","authors":"A. Haryono, Reni Agustin","doi":"10.30872/ppj.v4i1.1141","DOIUrl":null,"url":null,"abstract":"Self-Potential (SP) is a geophysical survey method that is relatively easy and inexpensive. Interpretation of SP data can be used for various purposes such as the detection of landslide-prone areas, exploration of various types of minerals, and identification of the parameters of a fault or crack. In this study, SP data acquisition was carried out in Tambakrejo Village, Pacitan District with a total of 102 measurement data which aims to determine the depth and dip of the Grindulu Fault. SP data acquired in the field needs to be corrected for reference, namely corrections caused by a displacement of the starting point of measurement. This data is then filtered to increase the signal-to-noise ratio (SNR) and sharpen the resulting anomalies. This filtering process is carried out using the ICEEMD (Improved Complete Ensemble Empirical Mode Decomposition) method which is a development of the EMD method. Furthermore, the SP data inversion process to obtain model parameters is carried out by utilizing the CSA (Crow Search Algorithm) method. Based on the anomaly model generated from the SP data inversion process, it can be concluded that the Grindulu Fault was identified at a distance of 803,8 meters from the starting point of measurement with depths ranging from 11,06 to 102,74 meters. Furthermore, based on distance, depth, and anomaly shape data, the dip value can be calculated. The calculation results show that the dip of the Grindulu Fault in the study area is 75.58o. Identification of the Grindulu Fault in the form of depth and dip is very important in efforts to model the fault comprehensively.","PeriodicalId":221598,"journal":{"name":"Progressive Physics Journal","volume":"25 34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penentuan Kedalaman dan Sudut Kemiringan Sesar Grindulu di Pacitan Menggunakan Metode Crow Search Algorithm (CSA) pada Data Self-Potential (SP)\",\"authors\":\"A. Haryono, Reni Agustin\",\"doi\":\"10.30872/ppj.v4i1.1141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-Potential (SP) is a geophysical survey method that is relatively easy and inexpensive. Interpretation of SP data can be used for various purposes such as the detection of landslide-prone areas, exploration of various types of minerals, and identification of the parameters of a fault or crack. In this study, SP data acquisition was carried out in Tambakrejo Village, Pacitan District with a total of 102 measurement data which aims to determine the depth and dip of the Grindulu Fault. SP data acquired in the field needs to be corrected for reference, namely corrections caused by a displacement of the starting point of measurement. This data is then filtered to increase the signal-to-noise ratio (SNR) and sharpen the resulting anomalies. This filtering process is carried out using the ICEEMD (Improved Complete Ensemble Empirical Mode Decomposition) method which is a development of the EMD method. Furthermore, the SP data inversion process to obtain model parameters is carried out by utilizing the CSA (Crow Search Algorithm) method. Based on the anomaly model generated from the SP data inversion process, it can be concluded that the Grindulu Fault was identified at a distance of 803,8 meters from the starting point of measurement with depths ranging from 11,06 to 102,74 meters. Furthermore, based on distance, depth, and anomaly shape data, the dip value can be calculated. The calculation results show that the dip of the Grindulu Fault in the study area is 75.58o. Identification of the Grindulu Fault in the form of depth and dip is very important in efforts to model the fault comprehensively.\",\"PeriodicalId\":221598,\"journal\":{\"name\":\"Progressive Physics Journal\",\"volume\":\"25 34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progressive Physics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30872/ppj.v4i1.1141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progressive Physics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/ppj.v4i1.1141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自电位法(Self-Potential, SP)是一种相对简单、廉价的地球物理测量方法。对SP数据的解释可用于各种目的,例如探测滑坡易发地区、勘探各种类型的矿物以及识别断层或裂缝的参数。本研究在Pacitan地区Tambakrejo村进行SP数据采集,共102个测量数据,旨在确定grinduu断层的深度和倾角。现场采集的SP数据需要进行校正以供参考,即测量起点的位移引起的校正。然后对这些数据进行滤波,以提高信噪比(SNR)并锐化所产生的异常。该滤波过程使用改进的完全集成经验模态分解(ICEEMD)方法进行,该方法是EMD方法的发展。利用CSA (Crow Search Algorithm)方法对SP数据进行反演,获取模型参数。根据SP资料反演过程生成的异常模型,在距测量起点803.8 m处识别出格伦都杜断层,深度范围为11,06 ~ 102,74 m。此外,根据距离、深度和异常形状数据,计算出倾角值。计算结果表明,研究区格伦都鲁断裂的倾角为75.58°。以深度和倾角的形式识别格伦都努断裂对断层的全面建模具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penentuan Kedalaman dan Sudut Kemiringan Sesar Grindulu di Pacitan Menggunakan Metode Crow Search Algorithm (CSA) pada Data Self-Potential (SP)
Self-Potential (SP) is a geophysical survey method that is relatively easy and inexpensive. Interpretation of SP data can be used for various purposes such as the detection of landslide-prone areas, exploration of various types of minerals, and identification of the parameters of a fault or crack. In this study, SP data acquisition was carried out in Tambakrejo Village, Pacitan District with a total of 102 measurement data which aims to determine the depth and dip of the Grindulu Fault. SP data acquired in the field needs to be corrected for reference, namely corrections caused by a displacement of the starting point of measurement. This data is then filtered to increase the signal-to-noise ratio (SNR) and sharpen the resulting anomalies. This filtering process is carried out using the ICEEMD (Improved Complete Ensemble Empirical Mode Decomposition) method which is a development of the EMD method. Furthermore, the SP data inversion process to obtain model parameters is carried out by utilizing the CSA (Crow Search Algorithm) method. Based on the anomaly model generated from the SP data inversion process, it can be concluded that the Grindulu Fault was identified at a distance of 803,8 meters from the starting point of measurement with depths ranging from 11,06 to 102,74 meters. Furthermore, based on distance, depth, and anomaly shape data, the dip value can be calculated. The calculation results show that the dip of the Grindulu Fault in the study area is 75.58o. Identification of the Grindulu Fault in the form of depth and dip is very important in efforts to model the fault comprehensively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis Perubahan Sinyal Pneumatic to Electric Menggunakan Algoritma Fuzzy Logic Kaitan Luas Permukaan Pot Bonang Dengan Frekuensi Nada Dasar Yang Dibangkitkan Penentuan Kedalaman dan Sudut Kemiringan Sesar Grindulu di Pacitan Menggunakan Metode Crow Search Algorithm (CSA) pada Data Self-Potential (SP) ANALISIS ISODOSIS TEKNIK TIGA DIMENSI DENGAN LAPANGAN KRANIOSPINAL PADA PASIEN ANAK Penilaian Tingkat Risiko Postur Kerja Menggunakan Metode REBA dan Biomekanika Pada Aktivitas Mengangkat Beban
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1