G. Piccolo, V. Puliyankot, A. Kovalgin, R. Hueting, A. Heringa, J. Schmitz
{"title":"硅基led中载流子注入器几何缩放增强发光性能","authors":"G. Piccolo, V. Puliyankot, A. Kovalgin, R. Hueting, A. Heringa, J. Schmitz","doi":"10.1109/ESSDERC.2011.6044206","DOIUrl":null,"url":null,"abstract":"In this paper we present the increased light emission for Si p-i-n light emitting diodes (LED) by geometrical scaling of the injector size for p- and n-type carriers. TCAD simulations and electrical and optical characteristics of our realized devices support our findings. Reducing the injector size decreases the diffusion current: therefore, for a particular on current, the pn-product, and hence the radiative recombination, inside the active region increases. A comparison is made among reference large-scale, micro-size and nano-size injector p-i-n diodes. We demonstrate a 4-fold increase in electroluminescence (EL) when the injectors are scaled down to micro-size and a further 10-fold increase for nano-size injectors.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Light emission enhancement by geometrical scaling of carrier injectors in Si-based LEDs\",\"authors\":\"G. Piccolo, V. Puliyankot, A. Kovalgin, R. Hueting, A. Heringa, J. Schmitz\",\"doi\":\"10.1109/ESSDERC.2011.6044206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the increased light emission for Si p-i-n light emitting diodes (LED) by geometrical scaling of the injector size for p- and n-type carriers. TCAD simulations and electrical and optical characteristics of our realized devices support our findings. Reducing the injector size decreases the diffusion current: therefore, for a particular on current, the pn-product, and hence the radiative recombination, inside the active region increases. A comparison is made among reference large-scale, micro-size and nano-size injector p-i-n diodes. We demonstrate a 4-fold increase in electroluminescence (EL) when the injectors are scaled down to micro-size and a further 10-fold increase for nano-size injectors.\",\"PeriodicalId\":161896,\"journal\":{\"name\":\"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2011.6044206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light emission enhancement by geometrical scaling of carrier injectors in Si-based LEDs
In this paper we present the increased light emission for Si p-i-n light emitting diodes (LED) by geometrical scaling of the injector size for p- and n-type carriers. TCAD simulations and electrical and optical characteristics of our realized devices support our findings. Reducing the injector size decreases the diffusion current: therefore, for a particular on current, the pn-product, and hence the radiative recombination, inside the active region increases. A comparison is made among reference large-scale, micro-size and nano-size injector p-i-n diodes. We demonstrate a 4-fold increase in electroluminescence (EL) when the injectors are scaled down to micro-size and a further 10-fold increase for nano-size injectors.